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The dynamic structure factor is calculated for a low concentration of light mass 
scatterers substituted in a cubic crystal matrix. A new numerical method for the exact 
calculation is demonstrated. We derive a local density of states for the low momentum 
transfer limit, and derive the shifts and widths of the oscillator peaks in the high 
momentum transfer limit. We discuss the limitations of an approximation which de- 
couples the defect from the lattice. 

1. Introduction 

The motion of single particles in non-degenerate 
condensed matter  can be observed in inelastic neu- 
tron scattering experiments. The technique is most 
useful for particles with a large incoherent nuclear 
cross-section. A particularly important  example is 
that of the proton, whose function is vital in many 
macromolecular  and solid state systems. For- 
tunately, the proton incoherent cross-section is ex- 
ceptionally large. 
Theoretical models based on harmonic particle mo- 
tion are often a good first approximation to particle 
motion in molecules and solids. The single particle 
motion in some harmonic models can be calculated 
without further approximation [1-3]. A full appre- 
ciation of the features of such models is an essential 
prelude to a complete interpretation of neutron scat- 
tering measurements. 
Here we present a comprehensive study of the re- 
sponse that would be observed in scattering from a 
particle embedded in a harmonic matrix. The re- 
sponse function is obtained in closed form and a 
complete study demands recourse to numerical anal- 
ysis, but two physically significant limits can be 
studied analytically. If the neutron scattering vector 
is very large the response is approximately a Gauss- 
ian function of the energy transfer, which is then 
similar to the response of a free particle. In the 
opposite limiting case of small scattering vectors a 

mode expansion is appropriate, and the response 
can be attributed to an elastic contribution, and 
contributions from the fundamental and higher-or- 
der modes. For intermediate scattering vectors, the 
response contains a wealth of structure that partly 
reflects prominent  features in the vibrational density 
of states of the host matrix that arise from the Van 
Hove singularities. We compare results for a Debye 
density of states with a realistic density of states to 
illustrate the shortcomings of the Debye model. Ef- 
fects of temperature and scattering vector are report- 
ed in detail. 

2. Response Function 

Let us denote the change in wave vector and fre- 
quency of the neutrons by Q and co, respectively. If 
the position vector of the a'th particle is R~, the 
response observed in incoherent scattering from par- 
ticle a is the time Fourier transform of [2] 

F, (Q, t) = (exp ( - i Q. R,) exp (i Q. R, (t))). (2.1) 

Here, R,(t) is the Heisenberg operator  at time t, and 
R , ( 0 ) ~ R  a. Note  that the position operators do not 
commute at different times. 
Several properties of F,(Q, t) merit discussion at this 
point. First, F~(Q, t ) = F a ( - Q ,  t) which follows from 
time reversal. Since the position operators in (2.1) 
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commute for t = 0 it follows that, 3. Lattice Green Function 

Fo(Q, O)= 1. (2.2) 

Finally, the so-called f-sum rule follows from the 
result, 

ihOtF,(Q, t)lt= o 

=-} ([exp ( - i Q - R , ) ,  [exp (iQ-Ro), H] ] ) ,  (2.3) 

where H is the total Hamiltonian that describes the 
system of particles. The proof of (2.3) utilizes the 
invariance of F~(Q, t) under Q --* - Q .  If the particles 
interact through a potential that depends on particle 
positions and not their velocities, the commutator 
on the right-hand side of (2.3) involves only the 
kinetic energy operator. We find the usual f-sum 
rule, 

iOtFo(Q, t)],= 0 = - hQ2/2M,, �9 (2.4) 

The observed response is proportional to 

Sa(Q, CO)=21 ~ dtF~(Q, 0 e io, t (2.5) 

and from (2.2) and (2.4) we deduce the frequency 
sum rules 

h ~ dcoSa(Q, co) = 1 (2.6) 
- - c o  

and 

dcocoSa(Q, co) = QZ/2Ma.  (2.7) 

The harmonic approximation to particle motion is 
useful for small displacements u about equilibrium 
positions. In this instance, 

F,(Q, t )= exp { ( Q . u a Q . u a ( t ) - ( Q . u S ) } .  (2.8) 

The reduction of (2.1) to (2.8) is exact for harmonic 
displacements; a proof is given in [2], for example. 
The condition (2.2) is evidently satisfied by (2.8), and 
(2.4) is equivalent to the condition 

(Q.uaQ.pa)  =ihQ2/2 (2.9) 

where Pa is the momentum operator conjugate to the 
displacement u a. If the a'th particle inhabits a cen- 
tro-symmetric environment (2.9) reduces to 

( % P a )  = 3ih/2. (2.10) 

which is a statement that the isotropic harmonic 
oscillator has minimum uncertainty. 

Most discussions of the properties of mixed crystals 
are couched in terms of Green functions [3-5]. In 
view of this, we express the correlation function in 
(2.8) in terms of a displacement Green function even 
though the problem of a single mass defect, treated 
here, hardly warrants use of the Green function for- 
malism [1]. 
The displacement Green function is 

G~r 1'; co)= - i  ~ dt([u~(t), U~(0) ] )  e i~t (3.1) 
0 

where uz(t ) is the displacement relative to the site 
labelled by t; c~, fi denote Cartesian coordinates, and 
[ , ] is a commutator. The displacement correlation 
function is obtained from the imaginary part of the 
Green function evaluated in the limit co ~c0 + i0  +. 
The relation appropriate for our calculation is de- 
rived from the fluctuation-dissipation theorem, and 
we find 

F~(Q, t) 

where fl = 1/k B T, and h = l, and 

J(co, t) = [cosh co(it + fl/2) - cosh c0 fl/2]/sinh cot~2. 
(3.3) 

In deriving (3.2) we have exploited the fact that the 
imaginary part of the Green function is an odd 
function of frequency [2]. 
Mass and spring constant defects in various crystal 
structures are discussed in detail in reference [3]. 
Expression (3.2) provides the link between the dis- 
placement Green function derived for these prob- 
lems and the correlation function in the response 
function observed in incoherent neutron scattering. 
We will consider the problem of a single mass defect 
in a cubic host. This simple problem illustrates a 
wealth of features that will be present to some extent 
in more complicated problems. 
We now write the Green function for crystal-with- 
defect, G, in terms of the unperturbed Green func- 
tion P~o(l, l'; co). There are two natural basis sets, one 
labelled by a site l and axis c~, the other by wave 
vector q and phonon branch j. Since each unit cell 
of the crystal is assumed to have one atom of mass 
M, j runs from 1 to 3. The unperturbed Green 
function is diagonal in this latter basis, and is 

1 exp(iq-(l --l')) 
P~(l, l'; c o ) = ~ M  ~jq a~(q)@(q) (.O 2 

(3.4) 
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where oJ(q) and coj(q) are the eigen vector  (polarisa- 3 
tion) and eigen value (dispersion relation) for the 
no rma l  coord ina te  labelled by j, q. 
Fo r  cubic crystals, to which we restrict our, at ten- 
tion, the unper tu rbed  Green  function is independent  
of the Car tes ian  labels [31. Since 

(~{(eO a{(q)= 6 ~  (3.5) 2 
J 

we mus t  have  Io-{[2 = 1/3 for all c~. It  is convenient  to Zlw____) 
in t roduce the function DIco~ 

P(co)=-MP~(l, l; co)= 1 ~  ~ (co 2 _col (q) ) -  t (3.6) 
3 N  jq 

which can be expressed in terms of the normal ised  
density of states Z(co) of the unper tu rbed  host  lat- 
tice, 

P(co) = l im ~ duZ(u)/((co + ie) z - u  2) 
~ 0 +  O 

=IP ~ duZ(u)/(CO 2 - u a ) - ~ - ~  Z(co). (3.7) 
0 

Here  IP denotes that  the principal  par t  of the in- 
tegral is taken. 
The per tu rbed  Green  funct ion G satisfies a Dyson  
equation.  Fo r  a single mass  defect the per tu rba t ion  
mat r ix  V has one non-vanishing element at the mass-  
defect site, which is also the neu t ron  scatterer,  and 
the per turba t ion  pa rame te r  is 

Z = 1 - rn /M (3.8) 

where rn is the defect mass. Dyson ' s  equat ion 

G = ( 1 - P V ) - I P  

is par t icular ly  simple given that  V has just  one ele- 
ment.  Moreover ,  because P~ is d iagonal  in the Car-  
tesian labels G ~  is also. The  Green  function 
G~(a,a; co) in (3.2) is found to be 

Gap (a, a; co) = 3 ~  P (co)/[ 1 - 2 co2 p (co)] M (3.9) 

where P(co) is defined in (3.7). It  is s t ra ightforward 
to verify that  in the limit 2 = 0 we recover  f rom (3.2), 
(3.3) and (3.9) the s tandard  expression for incoherent  
scattering f rom a cubic, ha rmon ic  crystal [2]. 
For  )~=0 the imaginary  par t  of G is p ropor t iona l  to 
Z(co)/co. I t  is therefore a cont inuous spec t rum of 
states, p ropor t iona l  to (co2/co)= co in the limit co ~ 0 ,  
and finite up to the m a x i m u m  p h o n o n  frequency co L. 
An example  Z(co) for a realistic model  of lattice 
vibrat ions,  a s imple cubic crystal with ratio of sound 
speeds 0.1, is shown in Fig. 1 together  with the De- 
bye spectrum. 
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Fig. 1. Solid lines, effective density of states against co/oat for a 
simple cubic crystal, ratio of sound speeds 0.1. The upper curve is 
undistorted, the middle has COo=1.1 , M/m=1.81, the lower has 
~o/oJr=3, M/m= 17.7. Dashed lines, same for Debye model, ex- 
cept for e)o/C~L= 1.1, M/m= 1.48 and e)o/O)c=3 , M/m= 13.2 

A mass  defect m 4= M creates new structure in G that  
is mos t  significant at frequencies which satisfy 

1 - 2 c o  2 Re P(coo) =0.  (3.10) 

The  frequency co o corresponds  to a true bound  state 
of the mixed system if coo > co,~, i.e. its f requency lies 
above  the con t inuum of lattice modes�9 Thus  situa- 
t ion prevails for m < M, the case of special interest to 
US. 

In this instance there is a separa te  cont r ibut ion  f rom 
the bound  state to the corre la t ion function in 
F,(Q; t), and the latter is the p roduc t  of factors that  
arise f rom an u n d a m p e d  oscil lator of frequency coo, 
and a con t inuum of lattice states of a defect. H o w -  
ever, the defect mo t ion  necessarily modifies the den- 
sity of lattice vibrat ions,  and there is a local lattice 
density of states [2, 7]. 

Z(co)/D(co) (3.11) 

where 

O(co) = L1 _ )~co2 p ( c o ) ] 2 .  (3.12) 

In  Fig. 1 we show this local density of states, for the 
Debye  and the realistic models  of lattice vibrations,  
and at bound-s ta te  frequencies just  above  (1.1coL) 
and well above (3 coL) the band  of lattice modes.  The  
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lattice density of states is depleted by the formation 
of the bound state, and this depletion is mainly from 
the higher frequencies, which is a consequence of the 
defect perturbation being only in mass, with no 
change in force constants. The total amount of this 
depletion is determined by the function h(coo) de- 
fined by 

Mh(co~ P(coo){2 d ~ c o 2 P ( c o ) 1 - 1 .  (3.13) 
2mco o uco I~o) 

Because the total number of states is unchanged by 
substitution of a lattice mass a finite value of h(coo) 
results in a depletion of states in the perturbed lat- 
tice. This is expressed through a normalisation of 
the local density of states (3�9 obtained from the 
sum rule (2.4). We find, 

dcoZ(co)/D(co)=M-M-(1 -h(coo)) = Ho(coo). (3.14) 
0 gtl 

F o r  M=m, h(coo)=0, D(co)= 1 (cf. (3.12)), and (3.14) 
expresses normalisation of the unperturbed host 
density of states. 
Using (3.9) in (3.2) and taking re<M, so a bound 
state (undamped oscillator) exists, we find the ex- 
pression (4.4) for the correlation function. 

4 .  N u m e r i c a l  M e t h o d  

We summarise the steps for calculating the scatter- 
ing response S(Q, co): 

f (co) = ~ duZ(u)(1 -u2/co2) - 1, (4.1) 
0 

h(coo)=2-1(2 -~ -1 )  ( c o ~ ) 2 j  , 

D(co) = [1 - 2 f  (co)] z + [�89 2 couZ(co)] 2, (4.3) 

{Q2hl~oo co duZ(u)J(u, t)} 
F a(Q, t) = exp ) J (coo, t) + ! u D (u) ' 

(4.4) 

S(Q, co)= 21n - ~ dtF~(Q, t)e -io '  (4.5) 
-co 

where J(co, t) is defined in (3.13), Z(co) is the density 
of states of a perfect cubic lattice with mass M at 
each site, m is the defect mass, and 2=  1 -m/M.  
The frequency coo of the defect mode satisfies 

2 f  (coo) = l. (4.6) 

In Fig. 2 is plotted the relationship between c%/co L 
and m/M, for the realistic and the Debye lattice 
density of states. As m/M ~ 1, the defect disappears 

L 
'\\ 

0'5 

�9 \ \ ) :  \ Ho 

0 , , ,  t . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  ~ 1  . . . .  I , i ,  

2 coo/co L 
Fig. 2. Lower curves are mass ratio m/M, upper curves the mo- 
ment Ho(o)o) from (3.14), plotted against O)o/C %. Solid lines, sim- 
ple cubic, dashed lines, Debye model 

and (DO/coL ---)" 1. For a very light defect, the defect 
and lattice timescales separate, and we have m pro- 
portional to co~ z, just as for any harmonically 
bound mass such as a simple pendulum. 
Also plotted in Fig. 2 is the quantity in (3.14), the 
fraction of modes associated with the lattice after 
depletion by the bound state. We shall see later that 
this quantity is related to the width and shift of 
peaks in the response. 
The scattering response is the Fourier transform of 
the exponential of a Fourier transform, which we 
evaluate by a sequence of convolutions. We first 
discretise the frequency, as it must be in any numeri- 
cal scheme, with spacing h. The density of states can 
then be approximated as 

N 
Z(co)= ~ Zj6(co-co); coj=jh. (4.7) 

j = l  

The normalisation can be written ~ Z j = I ,  so that 
integrals become sums. For any function B(co) 

S d o ) Z ( c o ) B ( c o )  ~ ~ ZjB(coj). ( 4 . 8 )  

J 

We assume that the defect frequency (n o is an exact 
multiple of h: COo---hi o. This can easily be achieved 
by making the light mass m dependent on co o rather 
than solving the transcendental equation (4.6)�9 
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We can now write F,(Q, t) as 

N + I  

F,(Q, t) = exp ~ AjJ(o9j, t), (4.9) 

Q2 Zj j =  1 to N 
AJ=2Mc~ D(~ (4.10) 

Q~ 
AN+t-2MCO ~ h(coo); o~N+ i ~- C9o . 

It is shown in reference [2] that the scattering 
amplitude from a single frequency f2 of amplitude A 
is 

1 ~ dte_i~O~eM(~,t ) s(!2, co) =5~-~ ~ 

= ~ f,(A, fif2/2)6(co-nf2) (4.11) 
--~x3 

where the coefficients f,(A, x) are defined in terms of 
regular modified Bessel functions: 

I-~ (A, x) = e - a r ~ + ,,~ I ,  (A/sinh x). (4.12) 

The scattering from a sum such as (4.9) can be 
obtained by successive convolution of the individual 
terms. 
It we let S (k)(Q, co) be the scattering corresponding to 
the correlation function 

k 

F(k)(Q, o))=exp ~ AjJ(o3j, t) (4.13) 
j=l 

then 

S(k)(Q, o9)= ~. [,(Ak, ficok/2)S (k- II(Q, co_ncok). (4.14) 
--oo 

Discretising this sequence of scattering amplitudes: 

Sr oJ):  ~ S}k'cS(co-jh) (4.15) 
j =  co 

gives the numerical scheme, 

5Jk'= ~ L(A.k, flok/2)s}kz~'; S}~ . (4.16) 
--co 

The final vector S~ k§ is the discretised scattering 
amplitude from all the different normal mode 
frequencies of the lattice, including the defect state. 
It would be as exact as the discretisation of Z(o.)), 
except for the necessary truncation of the frequency 
space for the S} k~. This can be monitored by the sum 
rule 

1 :~  dcoS(O, co)~- E S} k) (4.17) 
J 

which falls short if the truncation is too severe. 

The numerical sum rule can be shown by summing 
(4.16) over j: 

S~ ?)= [2  •(Ak, ficok/2)] ~ S} k- 1) (4.18) 
j n j 

The sum in the bracket is unity by the generating 
function for modified Bessel functions [6], and ~ S} ~ 
: ~ ~Sjo = 1. The numerical version of the f-sum-rule 
can be shown by differentiating this generating func- 
tion 

0 2  Z /')2 0 2  
2 6 0  S ( N + I ) -  .~. ~-~ j _t_ "~" h((D ~ Y - "  ' (4 .19)  

We need the functions f(co) and h(o~o) , which are 
integrals over the density of states. These should be 
consistent with the approximation (4.7); for example 

f (oak)= ~ Z j(1 -ja/k2)- ~ (4.20) 
J 

but this is insufficient when j=k.  We instead ap- 
proximate Z(co) by linear interpolation between dis- 
cretisation points, and evaluate f exactly in that 
sense. 
We also need an algorithm for the coefficients 
I,(A,x), which can be calculated by the recursion 
relations 

1-,-a = A  (1 - e -  2x)f, + e-  2xfn+ 1, (4.21 a) 

1"/ 
I - , + , -  ~ (e2~- l ) f ,+e2~I- , ,_  1. (4.21b) 

The downward recursion is stable for n positive, the 
upward for n negative. We start from arbitrary ini- 
tial conditions at large positive n, and apply (4.21a) 
to obtain ~I-o, c~I1, cd2 . . . .  for some normalisation c~. 
Similarly using (4.21b) we obtain 7Io,_7I-=_1, 7 f  2 . . . .  
for some 7. Since ~__~)-n= 1 and c~/7=c~Io/flo , we get c~ 
and 7, and hence I n from large negative n to large 
positive n. This set of fn is calculated for each point 
in the discretisation of the density of states, and also 
for the defect frequency, and a convolution carried 
out each time. 
A final stage is the convolution of S} ~+1) with a 
Lorentzian to give the finite resolution present in 
experiment. More efficiently we put the resolution 
function in S} ~ instead of 3jo, since convolution is 
commutative. 

5. Results 

The scattering response is a function of Q and co, the 
momentum and energy transfers. It also depends on 
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Fig. 3. Scattering response for Ogo/CoL=l.1 , TIe, L=0.1, Q2/2mcoz, 
= 1, for simple cubic (solid) and Debye (dashed). The resolution is 
0.2 co L 

the defect frequency 09 0 or mass ratio re~M, which 
are related by (4.6), the temperature, and the density 
of states, of maximum frequency co t . The procedure 
of Sect. 4 gives S(Q, 09) for constant Q, and we shall 
summarise its behaviour, which is described in detail 
in reference [2, 7]. 
At low momentum transfer, the Sjolander approxi- 
mation [8,9] is valid for the scattering from the 
lattice, and this structure is repeated at multiples of 
the defect frequency 09o. Figure 3 shows the response 
in this regime for COo= 1.109L: the one-phonon struc- 
ture 0 =< 09/09L < 1 is essentially a copy of the appro- 
priate local density of states of Fig. 1, and the 
strength of the peaks is given by an expression such 
as (4.11). The peaks have been broadened from their 
ideal delta-function shape, by a Lorentzian of width 
0.209 L. 
As the momentum transfer increases, the delta-func- 
tion oscillator peaks decrease relative to the smooth 
lattice background, as multiphonon effects compete 
with single phonon scattering. The total strength in 
these oscillator peaks is a lattice Debye-Waller fac- 
tor [2, 7]: 

e_2WL=ex p - - ~  ~ Z(u) coth flu/2 du (5.1) 
o uD(u) ' 

Qz 7 Z(u) coL 
J du; 2T~co L 

exp 2M09L o D(u) u 

TQ 2 7 Z(u) 09 2 
~;w~ --L-du; 2T>>09 L. (5.2) 

eXp - - M ~ L  o J 
utu) u- 

Table 1. Moments  of the effective density of states for the Debye 
model and for the realistic simple cubic structure, for the limits 
M / m  ~ 1 and M / m  --* oo 

Moment  Debye Cubic Debye Cubic 
M /m ~ oo M /m ~ .~ M /m = 1 M /m = 1 

H_ 2 1.33 2.69 3 4.68 
H_ 1 0.40 0.81 1.5 1.83 
H o 0.19 0.36 1 1 
H ,  0.1i 0.19 0.75 0,66 

L 

0 3 6 9 
co/co L 

Fig. 4. Scattering response for co0/coc=3, Q2/2mcoL= 5 for simple 
cubic crystal. The temperature is e) L (upper curve), 2coL, 3o) L, 4~o L 
(lower smooth curve)�9 The resolution is 0.1 co L and the vertical 
lines are at the unperturbed frequencies, no)o, and thus indicate 
the peak shift 

In Table 1 are various moments of the local density 
of states, defined as 

Hk(co~ ~ D(u) ~L du. (5.3) 

These dimensionless functions are given for the De- 
bye model and for the simple cubic structure, in the 
limits of very light defect, ~ind for M/m = 1, which is 
no defect at all. This transition from the Sjolander 
limit to a set of Gaussians at multiples of the defect 
frequency is illustrated in Fig. 4, which shows tem- 
peratures T/09 L = 1, 2, 3, 4 and the Debye-Waller to- 
tal peak strength from 0.21 to 0.002. For the upper 
(low temperature) curve, a small peak from the local 
density of states (Fig. 1) accompanies each oscillator 
peak, and for the lower (high temperature) curve, the 
lattice structure is washed out, leaving a set of 
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Gaussians. The vertical lines in Fig. 4 are to show 
that each Gaussian is shifted from a multiple of coo, 
and we shall now investigate this shift, and the 
width of the Gaussians. 
When the defect is very light, its frequency is much 
greater than the lattice phonons, and we can sepa- 
rate the time scales; the correlation function is a 
product of a defect correlation function 

exp {~m~-o J(co0, 0} (5.4) 

and one for the vibrations of the lattice 

duZ(u) J'u '4 
This latter correlation function varies slowly and 
implies a Gaussian response function, which is then 
repeated at multiples of coo by the former. Expand- 
ing the argument of the exponential (5.5) to second 
order in time gives the response 

SL(Q, co) ~ (27C72) - �89  exp [-(co - - 0 ) * ) 2 / 2 7 2 ]  

and this is combined with (5.4) to give a set of 
Gaussians 

S(Q, co)=y~ f.(y, BCOo/2)SL(Q, co -ncoo) 
n 

Q2h(coo) (5.7) 

Y= 2moo ~ 

In the expression for S L, the shift and width are 
given by [7] 

72"~_ Q2 ~ duZ(u) fu cothfiu/2 
c o , j - ~ !  D ~ u f - l l "  (5.8) 

The integral for the shift is that part of the density 
of states that has not been depleted by the bound 
(defect) state, and is given by the f-sum rule (3.14). 
This is plotted for the Debye model and for the 
simple cubic lattice in Fig. 2, and the light mass 
limits shown in Table I as H 0. The width is 

/ ~ 2 @  H1 (coo); 2T ~cor 

72 =.~ Y Q2 (5.9) 
[ - ~ -  Ho(coo); 2T>>CO L �9 

The latter expression gives a FWHM of 2.12 col for 
the high temperature curve of Fig. 4. 
The high Q limit of the response is just a single 
broad peak, when the scatterer (the defect) is essen- 
tially a free particle [9]. The set of oscillator peaks 
is washed out when the width 7 becomes greater 

0-6 

0'~ - 

S 

0.2 - 

-4 0 6 12 
w/o L 

Fig. 5. Scattering response for simple cubic crystal with QZ/2rneoL 
=5 and T/ooz=l. The peaked curve is ~Oo/OOL=3, (M/m=17.7), 
and the smooth curve is O0o/O & = 1.1, (M/m = 1.81) 

than the separation co o . This broad peak can then be 
approximated as a Gaussian with the same deriva- 
tion as (5.6), but with no separation of timescales; 

S(Q, co) ~_(2~r2) -+ exp [ -(co -0")2/2F23, (5.10) 

a * =  2 h(co~ ~ duZ(u)'~ Qz 
0 D ~ - J  = 2 M '  (5.11) 

F 2 Q2 2 
=2mm h(co~176 flco~ + Q~ ~o • D~U~ com#u/z.  

(5.12) 

The second equality in (5.11) is the f-sum rule, and 
states that the average neutron energy loss is the 
energy of its momentum transfer. The width is for 
high temperatures 

"2 TQ 2 
- ; 2T>co L. (5.13) 

m 

This is plausible, since in the impulse approximation 
F 2= ((V.V)2), where V is the scatterer velocity, and 
by equipartition the energy in each component of 
(V.V) is T/m, so  F2=Q2(V?)=Q2T/m.  
Figure 5 illustrates the response from a very light 
defect M/m=17.7 with dominant oscillator peaks, 
and the local density of states still visible, and the 
response from a heavier defect M/m= 1.8. At this 
momentum transfer, the lighter mass can react much 
faster, causing the great discrepancy between these 
curves. 
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Fig. 6. Exact scattering response (solid line) and uncoupled ap- 
proximation (dashed line), for the simple cubic crystal, c%/c%=3, 
T/COL=2 and Q2/2mooL=5 

We now consider an approximation to the response 
function, which is to replace the phonons of the 
defected matrix by those of a perfect translationally 
invariant matrix, and to consider the defect motion 
uncoupled from the lattice. Formally this consists of 
setting Z(o~)/D(o~)-*Z(~) and h(co0)~l.  The local 
density of states Z/D is not amplitude-weighted; in- 
deed we have chosen cubic crystals precisely to re- 
move the necessity for amplitude-weighting. Neither 
is it the density of states of the defected crystal; this 
paper is concerned with the low concentration limit, 
so the gross density of states is unchanged. The 
quantity Z/D expresses how the defect velocity is 
correlated with itself at later times; i.e. how the 
lattice eigen vectors are distorted near the defect. 
This uncoupled approximation makes all the mo- 
ments Hk(co0) independent of co 0 and equal to their 
values at M/m = 1. The greatest effect of the approxi- 
mation thus occurs for a very light defect. Since the 
approximation decouples the phonon spectrum from 
the defect motion, the narrow oscillator peaks per- 
sist longer: Q need only be half as large in the 
approximation (from (5.2) and Table 1) to wash these 
out. In addition, the width 7 of (5.6) is 3.5 times as 
great in the uncoupled approximation. These effects 
are illustrated in Fig. 6, which shows the exact and 
uncoupled response functions intermediate between 
the Sjolander regime and a set of Gaussians. It is 

clear that the uncoupled approximation gives a 
much larger width, and much smaller peak strength. 
In the very high Q limit, when the response is a 
single broad Gaussian, the effects of the approxima- 
tion are more pronounced. From (5.12), we find the 
peak to be centred at 

m t O* = - - - - * - -  1 + ~  (5.14) 
2m 2m 

which violates the f-sum rule result Q2/2m. The high 
temperature limit of the width becomes 

( m )  r2 - rQZm ~ rQ2m 1 + ~  . (5.15) 

6. Conclusions 

We have derived, calculated and described the scat- 
tering response from a light defect substituted in a 
crystal. The numerical method is new, more con- 
trollable and more efficient than the conventional 
Fast Fourier Transform. We have derived the local 
density of states to be used in the Sjolander approxi- 
mation, and shown that at higher momentum trans- 
fer it is the moments of this Z/D rather than Z that 
correctly describe the shifts and widths of the Gauss- 
Jan peaks. The density of states is especially depleted 
at frequencies near the band edge, because we have 
chosen to use a mass defect with no change of force 
constants. We have shown that approximating this 
local density of states by the lattice density of states 
is incorrect, especially because of the over-estimation 
of peak widths. 
This model has the advantage of giving the response 
function in closed form which can be easily calculat- 
ed, but to be a tool for interpreting neutron scatter- 
ing data it must be more comprehensive. One could 
consider different force constants for the defect and 
for the lattice. A non-zero concentration of defects 
would broaden the delta-function oscillator peaks of 
this model. If the defect were interstitial, not sub- 
stitutional, or if its environment were tetrahedral 
rather than cubic, there would be several oscillator 
frequencies, not just one. These complications make 
the response depend on the generalised density of 
states, including the phonon eigenvectors, and the 
algorithm involves matrix operations in place of 
simple numbers. We feel such an approach would be 
useful for fitting spectra, perhaps not for under- 
standing. 
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