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Abstract

We have attempted to compute useful light curve features giving the rise rate and
blackbody temperature for an early light curve of an explosive event such as a supernova.
We fit two families of functions: an exponential in time multiplied by a blackbody
spectrum; and a Bazin rise-fall function multiplied by blackbody. We have computed
these best fits on 60 simulated LSST light curves from the Plasticc dataset; not just
once but at every epoch that new data arrives.

1 Introduction
We have benchmarked a feature set for observations of early explosive transients, based on
fitting parametric functions simultaneously in both time and wavelength. It will work best
when observations are with many filters, to provide a range of wavelengths: the target is
LSST, where we expect 6 filters (ugrizy). While there has been much work on modelling
post-peak supernova light curves, there seems to be much less on useful features from the
pre-peak light curve.

The LSST project will release large numbers of alert each night[1], and the UK transient
broker Lasair[2] will add value to the stream, and filter out precisely what each user wants.
The filters are built from features of the light curve, that should capture some essence of
a light curve, features that can be used in the SQL-based statement of a filter. We prefer
features to classification, so that Lasair is a platform for scientists to ask questions, rather
than a provider of answers. But in both cases, feature or classifier, it is important for the
system to be able to say I don’t know, rather than sometimes providing a useless number.

Under the leadership of Eric Bellm, the LSST project is considering a number of published
features[3], mostly concentrated on periodic and stochastic variables. The “Light-Curve-
Features” library[4] has another selection of features, many built from curve fitting. We note
in passing that there are not many "multi-wavelength" features of light curves. Early transient
surveys used one filter, or no filter, so a light curve was necessarily a scalar plot of flux against
time. ZTF had 3 filters, but LSST will have six filters; therefore colour information becomes
much more useful. We shall be modelling the light curve as a “spectrumcurve” – where flux
is a function of both time and wavelength.
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In this note, however, we try to search for and characterise explosive transients, such as
supernovae, kilonovae, tidal disruption events, etc. There are two main characteristics of
these: (1) A host galaxy in which the explosion resides, although sometimes it can be too
faint to be seen. (2) They are not variable sources; rather the light curve starts suddenly,
as soon as its flux is 5σ above the reference sky, and the survey reports an alert. We are
interested in finding unusual supernovae, where a rapid follow-up is crucial for the science;
these are characterised by the rise rate of the flux before peak, and the fall rate after peak.
The six filters of LSST will allow us to fit also in this direction, producing a black-body
temperature. These are the features we would like to extract from an early light curve: rise
and fall rates, and effective black body temperature.

Sako et.al.[6] fit historical observed light curves of different types of supernovae, to classify
a new supernova. Guillochon et.al.[7] built MOSFiT, an architecture and collection of models,
so that light curves can interoperate with classification software.

There are many ways to convert a time-wavelength light curve into an image, so that the
power of machne learning can be brought to bear. Conley et.al.[8] fit sophisticated complete
light curves, including colour information, to high redshift SNIa candidates. Vincenzi et.al.[9]
use gaussian process fitting to create a library of time-wavelength images, and use these to
classify full light curves of supernovae. SNGuess from Miranda et.al.[10] uses some 27 features
of the light curve and sky context, with a machine learning system, to make classifications.
Mahabal’s dm/dt plots are images that can also be used for classification, created for example
by the light-curve-dmdt-exec code[11]. In the following, we model time-wavelength flux data
with a product of a black body flux and either a Bazin[5] or exponential in time.

2 Modeling the Light Curve
We model the flux as a function of

• time in days, with the zero of time at or near the peak flux, and

• wavelength in microns, ranging from g at 0.5 micron to y at 1.0 micron.

The model splits into a product of a function of time and a function of wavelength. We
note that this implies no heating or cooling as the supernova progresses, which is simple but
unphysical. In this work, the function of wavelength is a blackbody spectrum:

B(λ;T ) =
5000

λ5T 4[exp(Q/λT )− 1]
(1)

where the total flux is normalised through the T 4 term. If λ is measured in microns, and
the temperature in thousands of Kelvin, then Q = hc/k = 14.387. This function is shown
as Figure 1, together with the wavelengths of the five filters we will use. For temperatures
much higher than 4000K, the flux decreases with wavelength, and for temperatures much less
than 4000K, the flux increases with wavelength. In these cases, a linear relation would suffice
between wavelength and flux, but at 4000K, the flux rises then falls with wavelength.

For the time component of the fitting model, we consider first the Bazin model[5], a simple
function that increases exponentially for large negative times, and decreases exponentially for
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Figure 1: Blackbody flux at 4000 and 10000 Kelvin, with wavelengths of five filters

large positive times. It is characterised by a rise rate kr and a fall rate kf :

b(τ) = exp(−kfτ)/[1 + exp(−krτ)] (2)

As noted above, when τ is large and negative, the Bazin curve is approximated by an
exponential with k = kr − kf :

e(τ) = exp(kτ) (3)

We combine B(λ;T ) and either b(τ) or e(τ) as a fitting function for the flux-light curves

Figure 2: Bazin and exponential functions of time, multiplied by 4000K blackbody, at five
wavelengths.

measured through multiple filters:

Fb(t, λ) = AB(λ, T )b(t− t0)

Fe(t, λ) = AB(λ, T )e(t)

The first version (Bazin) has five free parameters: A, T , t0, kf , and kr, and the second
(Exponential) version has three free parameters: A, T , k.

Figure 3 shows the transition from fitting with a 3-parameter exponential to fitting with
the 5-parameter Bazin. The green diamonds in the top panel show the idealised light curve,
an equally-spaced Bazin with kr = 2.5 and kf = 0.5. We imagine the data comes in from left
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to right, with increasing time, and for each data point we fit with an exponential, as shown
with the red blobs below. Each blob represents an exponential fit to the data above and to
the left. At first, the fitted value is exactly as the mathematics predicts: k = kr − kf = 2.0.
But as we approach the peak of the Bazin data, the fitted k falls. The blue blobs at the right
show the true Bazin parameters. We will see the same behaviour in the fits described below:
the fitted exponential rate falls as peak approaches, which splits into two Bazin dates – rise
and fall – at and past the peak.

Figure 3: Fitting a Bazin light curve with exponentials.

3 Simulated LSST Data
In order to test our fitting procedure, and its ability to make useful light-curve features, we
want to test it on real explosive transients, as recorded by a suitable transient survey. This
means multiple filters, where the number is greater than the two filters provided by the ZTF
public survey, more like the six that will be provided by LSST.

We have chosen a simulated transient survey "The Photometric LSST Astronomical
Time-Series Classification Challenge" (PLAsTiCC) [12] that has been used for classification
challenges in the past. In addition to providing fluxes at many wavelengths, it also provides a
training set with each light curve labelled by the type of explosive event – SNIa, SNII, SLSN,
KN, etc. The simulated light curves are provided in six filters, follow the expected LSST
cadence, and effects of redshift and galactic extinction are included. Of the types of explosive
events, we have chosen six, each listed with their abbreviation, description and responsible
authors:

• SNIa – WD detonation, Type Ia SN (R.Kessler)

• PecSNIax – Peculiar SNIax (S.Jha, M.Dai)

• SNIbc – Core Collapse, Type Ibc SN (A.Villar, R.Kessler, J.Pierel)

• SNII – Core Collapse, Type II SN (S.González-Gaitán, L.Galbany, R.Kessler, J. Pierel,
A.Villar)

• SLSN – Super-Luminous SN (magnetar) (A.Villar)
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• TDE – Tidal Disruption Event (A.Villar)

Figure 4 is an example of a SNIa light curve from Plasticc. We have not used the u-filter,
as its fluxes seem unreliable, but only the five grizy filters. Each light curve from Plasticc

Figure 4: A simulated light curve from Plasticc, id=29088.

has a long section of essentially zero flux before the explosive event starts, whereas the LSST
will not report these quiescent detections: the first alert is sent only when the flux rises above
background. This is marked with the black diamond in Figure 4. In this work, we search for
this “discovery” as a 7σ deviation from the previous background. LSST will also deliver some
forced photometry from before the discovery time, which we have simulated by allowing all
data after 20 days pre-discovery.

4 Fitting the Simulated Data

Figure 5: Early light curve from Plasticc (id=29088), fitted with both exponential (left) and
Bazin (right).

We have used the curve fitting package scipy.leastsq to minimise the sum of the squares
of the residuals, over a two-dimensional time-wavelength space. The return from this process
is: (a) the best fit, and (b) the covariance matrix, that can be converted to error bars on
the fitted parameters – see Figure 6 for these, where a few of the parameters have error bars
bigger than the size of the marker. Sometimes the curve fitting doesn’t converge; for example
when trying to fit a Bazin curve well before the peak it is intuitively obvious that there is
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Figure 6: Repeated fitting of a light curve for each day of new data (id=167310). Top of 4:
the light curve data; then the best fit rise/fall rates, red for exponential and blie/purple for
Bazin; the blackbody temperature fit; bottom the R2 measure of the quality of fit.

no available information about the fall rate. Figure 5 shows how the exponential and Bazin
models can be used to fit the light curve of Figure 4. We have removed the data for t > 5, so
we are fitting an event just past peak, with 40 photometric measurements. The Bazin is the
best fit – see below for the criterion.

From the thousands of light curves in the Plasticc training set, we picked about 60 by eye,
with about equal numbers from the five categories listed above. We chose those light curves
that start with flux near zero, then have a rise, a peak, and a fall. We did not choose those
that seemed to be just jagged noise, nor did we choose those where there is only a pre-peak
or post-peak light curve.

We ran the curve-fitting process for each day on which new data appeared, using that
data and the data before it, back to 20 days before the discovery time. As can be seen in
Figure 4, there are generally many detections at almost the same time, so we only ran the
fitting when all the data is in for that day.

As noted above, one of the objectives of this work is to make useful features from the
early light curves of these explosive events; and that implies not quoting a numerical value
that is not worth having. Therefore, if the curve-fitting doesn’t converge in good time, we
simply do not quote a value – value of feature = NULL.

There are other conditions when we judge that there is no sensible result, and do not
quote any values:
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• if the rise rate or fall rate is negative, or

• if the rise rate or fall rate rate is greater then 2, or

• if the errorbar on a quantity is larger than the magnitude of the quantity itself.

We have defined the quality of the fit with the coefficient of determination, or “R-squared”.
If SST is the sum of the squares of the difference between the data and its mean, and SSR is
the sum of squares of the differences between data and the best fit, then R2 = 1−SSR/SST .
In Figure 5, the R2 for the exponential (left) is 0.80, and for the Bazin (right), the R2 is 0.98,
which is a better fit, we declare the Bazin to be the best model for fitting at this stage of the
light curve.

Figure 7: A scatter plot of rise rate and fall rate for the final Bazin fit well after the peak
flux.

Figure 6 shows our complete analysis of a light curve from Plasticc, running a best-fit
analysis each time new photometry appears. Sometimes our procedure fails to reach a sensible
result, and so nothing is shown, as with the first detections before t = −20,

The detected fluxes are in the top panel, and the lower three panels show:

• Rise and fall rates: k for the exponential in red; kr and kf for the Bazin fit in blue and
purple. Error bars are derived from the least squares software used for the fitting, and
reflect the curvature of the residual at the minimum.

• The black body temperature from the simultaneous time-wavelength fitting.

• The quality of the fit as given by R-squared.

5 Conclusion
While our objective here is the difficult problem of early light curves, we can show that the
fitting method works at least for late light curves. Figure 7 is a scatter plot of the rise rate
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and fall rate (kr and kf ) computed at the end of the light curve, for the five different types
of supernova. The superluminous supernovae (SLSN) are clearly clustered in the corner with
slow rise and slow fall. The SN Ia are tightly clustered with rise rate between 0.2 and 0.4 per
day; and the peculiar SNIax are differentiated with a fast fall rate.

Figure 8: A scatter plot of first (exponential) fit to the rise rate, vs the rise rate for the final
Bazin fit – well after the peak flux.

Figure 8 attempts to show how well the first measurement of the rise rate correlates
with the final measurement. The first was in each case the exponential fit, based on very
little data, and the last can be thought of as the "true" rise rate, determined by the entire
post-peak light curve. It is clear there is a strong diagonal on the plot, showing the worth of
the feature we have computed. However, there are some outliers, shown in more detail to the
right. The top one has a sudden brightening in just 2 days, giving rise to the overestimate of
initial rise rate. The bottom one has no date between discovery and peak, making the early
determination of rise rate rather difficult.
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