
Efficient Convergence Acceleration for a Parallel CFD Code

R.D. Williamsa, J. Häuserb, and R. Winkelmannb

aCalifornia Institute of Technology, Pasadena, California
bCenter of Logistics and Expert Systems, Salzgitter, Germany

1. INTRODUCTION

In this paper, we consider strategies for efficiently solving the system of nonlinear
equations that arises from making an implicit time-step of a flow solver. By efficiency,
we mean an analysis of costs, such as machine usage, and benefits, being approach to
convergence. When the Navier-Stokes equations are discretized on to a given spatial
mesh, using a given differencing scheme, the result is a set of ordinary differential
equations, with time as the independent variable:

Here, N is the number of degrees of freedom in the spatially discretized solution;
N=nk is a product of the number of grid-points, n, with the number of degrees of
freedom per grid-point, k. The ODE’s are then discretized using either an explicit or
an implicit scheme, or a so-called block-implicit scheme. In the former case, we have a
large number of independent equations to solve, one for each grid point, and in the
latter cases, we have a large set of simultaneous nonlinear equations to solve, which
may be written F(u) = 0, where

In the implicit case, such large sets of nonlinear equations are generally solved with
a variant of Newton's method, where a sequence of linear systems are solved, and the
method hopefully converges to the solution of the nonlinear system. The great
advantage of the Newton iteration is its quadratic convergence, so that in a
neighborhood of the solution, the residual after the step is a constant times the square
of the residual before the step. In the following, we shall refer to the “Full Newton”, or
“Fully Implicit” methods to mean that we are doing the Newton step, where the
linear systems are of size NxN. In spite of the cost of solving these large linear
systems, this is clearly the correct method to use near convergence, because of the
large benefit per step.

We shall also investigate “Block Implicit” methods, where the N independent
variables are domain-decomposed into B blocks, so that the linear system of size N is

t∂
∂ui Φ u()+ 0 u ℜN∈,=

F u()
u uold–

∆t
------------------- Φ u()+≡

replaced by B systems each of size approximately N/B. Now the explicit methods can
be seen to fit into a continuum from fully implicit, through block-implicit: the explicit
scheme is simply an implicit one, but with each grid-point being its own 1x1 block.

2. BENEFITS AND COSTS

(a) Benefit: The benefit of each of the various methods is easy to define: it is simply
the decrease on the logarithm of a residual function. In the following, we shall use a
residual which is the L2 norm of the ODE system,

so that steady state is achieved, by definition, when this quantity is zero. To be
specific, we shall define the benefit of an iteration step as the decrease in the logarithm of
the residual.

(b) Cost: Often in the CFD literature, there are graphs showing convergence as a
function of the number of steps of some numerical method. While the measure of
benefit is the same as above (based on residual), it is difficult in these cases to
compare costs, since some numerical methods take much more computing resources
per step than others. It is more appropriate, in our opinion, to compare numerical
methods by a more realistic measure of the cost of the method, such as wall-clock
time, accounting units, or total floating-point operations (flops). On a uniprocessor
machine, these three measures are all (very roughly) equivalent, but on a parallel
machine the ratio of the number of flops to the wall-clock time is not a constant but
depends on the number of processors. If the parallel machine is being used by a
single user, then the cost of using it is presumably related to the time it takes to
complete a job, but in a more realistic, multi-user environment, it also depends on the
number of processors used.

For users of the parallel machines at the Caltech CACR, charges are in terms of
node-hours, which is the product of the number of processors used with the number of
hours for which those processors were reserved. If the solver, running on P
processors, has efficiency e, then the cost of executing a program of F flops is F/e.
When the efficiency is close to one, the execution is cost is independent of the number
of processors. In earlier work [3,4], we have shown that ParNSS is a very efficient
code, so that the cost (in node-hours) for running the computation is essentially
independent of the number of nodes.

As discussed above, using implicit methods means that a large proportion of the
computation time is devoted to solving linear systems of equations. The number of
independent grid variables, N, is also the order of the matrix. With a direct method
like LU-decomposition, the flop-count, and hence the cost, is of order N3.

Another estimate is provided by the convergence rate of Krylov-space methods,
such as the GMRES [5,6] that we use to solve the linear systems. This is controlled by
the condition number, which is generally inversely proportional to the square of the
mesh spacing, h. If we assume that Nh3 remains constant (conservation of geometric
volume), then the condition number for an iterative method rises as N2/3, so that the
flop count for the solution rises at least as fast as N5/3, which is much better than the

Residual Φ u()=

direct methods, but at the price of less robustness. We point out that the analysis
above is really restricted to symmetric matrices characteristic of elliptic PDE’s, not the
highly unsymmetric matrices that arise from hyperbolic systems. Of course we should
also note that for an explicit step, the flop count is proportional to N.

Now that we have defined benefit and cost, we need to measure these for the
methods that we have available: from the expensive-but-effective fully implicit
method, through the block-implicit methods, to the cheaper-but-less-effective explicit
method. shall plot benefit against cost for each at various stages of the convergence.
We should emphasize that we are trying to maximize efficiency, which is the ratio of
benefit to cost.

3. MULTIBLOCK METHODS

The basic approach is that the complex geometry of the solution domain is
partitioned into a number B of smaller domains, each topologically equivalent to a
simple domain such as a hexahedron: we shall refer to these as blocks. This partition
comes from the grid-generation process, based on the geometry and topology of the
solution domain, optimization of grid quality, and a priori knowledge of the
investigator about the flow field. We would like to point out that topologically, we can
always use a single block as a grid for essentially any arbitrarily complex geometry,
but in most cases of interest, a numerical solver will not be able to use this highly
distorted monoblock for simulation of a fluid flow.

For efficient numerical solution of general PDE's, there are certain conditions that a
grid must satisfy [1], such as resolution of physical features of the domain boundary,
good control of grid skewness, volume ratio of neighboring cells, grid smoothness
and lack of singularities in the grid. For CFD, an additional requirement for the grid is
that the grid-line configuration is reasonably aligned with the streamlines of the flow,
and for high-Reynolds number flow, there must also be special gridding near physical
boundaries so that the boundary layer is correctly modeled. Given a solution domain
with complex geometry, together with these constraints, there is a minimum number
of blocks that can satisfy these requirements. Thus we assume in the following that
the basic topology of B blocks has already been generated with careful regard to grid
quality, and that the total number of grid-points is n.

4. ParNSS — PARALLEL NAVIER-STOKES SOLVER

In the following, we use the ParNSS code [1-4] as a workbench on which to test
ideas of cost and benefit. ParNSS is a multiblock Navier-Stokes solver originally
developed to simulate hypersonic flow, now extended to transonic and subsonic flow.
The message-passing is written in PVM, ensuring portability: ParNSS has run on SGI
systems at CLE in Salzgitter, Germany, Intel Paragons at Caltech in Pasadena,
California, and on the IBM SP2 at ESTEC in Noordwijk, Netherlands. ParNSS is a
finite-volume, hexahedral multiblock solver that utilizes various techniques to
accelerate convergence to a steady state, and we briefly summarize these techniques
below.

For the purposes of this paper, we shall consider the computational objective to be

steady state flow rather than a time-accurate unsteady computation. In particular, this
paper is concerned with approximating the full linear system inherent in a full
implicit step with many small linear systems, through domain decomposition.

Time-Stepping: the CFL Number
The steady state is approached by a process that is similar to time-stepping. For

each block, we set up the equations for an implicit time-step and solve the resulting
nonlinear equations, except that each block can choose its own time-step. For each block b,
we compute the natural time-step ∆tb, which is the minimum over grid cells of the
size of the cell divided by the fluid velocity in the cell. This timestep is that
corresponding to a CFL number of 1, and is the largest that can be used if the explicit
scheme is to be stable. The actual time-step that is used on each block is then a
product of ∆tb with a parameter that we call the “CFL Number”. We expect the
implicit step to be stable even when the CFL Number is greater than 1, and we expect
the explicit step to be unstable if the CFL Number is much larger than 1.

Notice that each block has its own timestep, determined from local conditions, so
that we are not approaching the steady state through physical time-stepping, but
simply using time as a parameter that can be manipulated and distorted to lead us to
the steady state.

If the CFL Number is large, we make good progress toward our goal, the steady
state, but the scheme that we using may not converge, or it may converge to
unphysical values; but if the CFL Number is too small, we are being very safe, but
making little progress. In ParNSS, we have chosen to start the CFL at some safe value,
perhaps 0.01 where all the schemes converge, then increase it conservatively, at 5%
per step, but when there is an indication of poor convergence the CFL Number is
halved. In this way the CFL Number is pushed up to the greatest safe value, thereby
maximizing the progress toward the steady state.

5. EXPLICIT, IMPLICIT AND BLOCK-IMPLICIT

Explicit steps
When the code begins, the flow is set to the free-stream values everywhere in the

domain. We start with an explicit scheme to create the general configuration of the
flow, including a rough approximation of the position of the shocks. The CFL number
is initially very small, and it is increased cautiously and conservatively. Explicit
schemes are highly efficient on parallel machines because of the large ratio of
computation to calculation, and in simple cases this explicit iteration is sufficient for
full convergence. However, in interesting cases a point is reached when the residual
decreases very little even with large numbers of iterations: the computation is said to
be stalled.

Block-implicit steps
An implicit scheme is used to continue iterations. The major advantage is stability

even with CFL numbers considerably greater than one, and the consequent rapid
convergence. The disadvantage is that a fully implicit step involves the solution of a
linear system involving the mesh over the whole solution domain, and is therefore

much more computationally intensive than explicit steps. In fact we do not use fully
implicit steps at this stage, but rather a block-implicit scheme with a locally-
determined time step on each block, meaning that the time steps are in general
different on each block. We are approximately solving the system of linear equations
by neglecting matrix elements which connect cells in different blocks. Since it is the
blocks which are distributed among processors, this approximation means that each
solve can occur within a processor with no communication to other processors.
Furthermore it should be noted that the value of a step is measured according to how
much it can reduce the residual, not according to how well it solves the fully-implicit
linear system; we are not doing a time-accurate solve here, but only trying to drive the
residual to zero by any means possible.

During the block-implicit phase, the time-step is chosen on a block-by-block basis
by a minimum over the block of a local smoothness measure. Here is another
deviation form exact time- stepping, which would of course require the same time-
step on all blocks.

As noted above, ParNSS is a very efficient code, and this is because blocks are not
split across multiple processors. The reason for this is as follows. A block-implicit step
involves solving a linear system whose size is the number of degrees of freedom in the
block, which requires considerable computing resources; only after the linear solve is
there communication with other blocks that may be on other processors.

Newton's Method — Fully Implicit
Finally, when it is clear that we are close to the steady state, we use the fully

implicit step with a global time step, with all the communication overhead that this
implies. We allow the timestep to become very large or infinite. The justification for
this is by observing that an implicit step of a differential equation system with infinite
time step is equivalent to using Newton's method for the steady state of that system.
Newton's method is quadratically convergent when the initial approximation to the
solution is close enough to the exact solution, meaning that the magnitude of the
residual is squared with each step, so that it tends to zero very quickly.

Unfortunately we are not able to achieve full implicitness with our multiblock
grids, since the linear solve always works on a single block. While blocks can be split
to move away from full implicitness, we cannot reduce the number of blocks below
the number B that is specified by the grid-generation process.

The Solution Scheme
The three steps to a solve that are expressed above may be recast as a “schedule of

implicitness”: beginning with a fully explicit scheme, we move to a slightly implicit
scheme with very small blocks (perhaps 3x3x3) being treated independently, then
larger and larger sub-blocks until eventually we are doing the fully implicit scheme.

The schedule of implicitness is reminiscent of the temperature schedule in
optimization by simulated annealing (SA). In that case, a stochastic acceptance-
rejection procedure is used to minimize a function. The procedure is parameterized by
a variable analogous to temperature, which decreases slowly to zero. The difficult part
of a practical SA algorithm is the decision on how fast the temperature decreases,
whether it is decided in advance or dynamically. In the same way, we must decide

how many steps should be done for each sub-blocking or super- blocking, or produce
a decision mechanism for moving on to the next larger subset of the grid-points for
the implicit steps.

Numerical Experiments
The first experiment in convergence strategies is an Euler flow in two dimensions:

the NACA0012 airfoil at Mach 1.7. The original grid is of 48000 points, with two
blocks, and we have also split this grid into 8, 32 and 128 blocks. We have run this on
an Intel Paragon distributed-memory machine using four different schemes: 8-Block
Implicit, 32-Block Implicit, 128-Block Implicit, and Explicit. The residual is plotted on
a log scale, which is our measure of benefit, and the horizontal axis is node-hours
which is cost.

We approached convergence in three stages, allowing the methods to compete at
each stage for the least cost to achieve a given benefit. The grid data from the best
scheme was then used as input for the next stage.

As shown in the table, we used each scheme to reduce the residual from its initial
value to 0.1, then to 0.001, again picked the most efficient scheme, then in the third
stage reduced the residual to 0.00001. By this stage, the subsequent reduction to
machine accuracy is just two or three more steps.

The CFL Number for each scheme was 0.01 to begin: this is because the flow is not
even tangent to the boundaries, and we must be very conservative. The CFL now rises
at 5% per step; for the explicit scheme it is bounded at 0.5 to prevent instability, but for
the implicit schemes there is no maximum. Stage 2 has the starting value set at 1.0,
and in Stage 3, the CFL continues from the value (197) that it had at the end of Stage 2.

The results are shown in Figure 1. We found, as hypothesized above, that the most
efficient route to convergence for this problem begins with the Explicit scheme, then
uses the 128-Block Implicit scheme, and finishes with the 8-Block Implicit scheme.
Unfortunately we were not able to run the 2-block mesh because of memory
constraints on the Paragon node — each node has 64 Mbytes.

The results for the explicit scheme in stage 2 show some spikes in the value of the
residual, and as a result the CFL Number was halved to 0.25, only to rise back at 5%
per step to the maximum value of 0.5. In other runs of ParNSS with different flow
conditions, the implicit runs also show sudden increases in residual as a symptom of
poor convergence, and we also halve the CFL Number in these cases with good effect.

Figure 2 shows the load balance of the block implicit method. A set of linear
equations is solved independently on each block, using a Krylov method (GMRES),

Stage
Ending

Residual
CFLstart
(implicit)

CFLstart
(explicit)

CFLmax
(explicit)

1 0.1 0.01 0.01 0.5

2 0.001 1.0 0.5 0.5

3 0.00001 (continue) 0.5 0.5

and so the number of iterations, and hence the time taken, is different on each block.
In the Figure, the ratio of the areas of the shaded block to the outline block is
proportional to the (wall-clock) time spent doing the GMRES solve on that block. We
can see that most blocks take roughly the same time to be solved, but those in the
undisturbed fluid above and to the left of the leading edge take much less time. For
this particular experiment, it would seem that the load-balance is not sufficiently poor
to warrant the creation of rebalancing software, and we will make further
investigations to decide if this is true in general.

In the future, we will investigate the scaling of the computation and cost-benefit
analysis with variable n, the number of grid-points, to complement this work on
scaling with the number of blocks.

1e-05

0.0001

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40 45 50

dU
/d

t R
es

id
ua

l

Node-Hours

Explicit

Block Implicit, 128

Block Implicit, 8

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

Block Implicit, 128

Block Implicit, 128
Block Implicit, 32

Block Implicit, 32

Block Implicit, 32
Block Implicit, 8

Block Implicit, 8

Explicit

Figure 1: Convergence behavior for the 2D Mach 1.7 Euler Testcase. The most
efficient scheme is to use the Explicit method first, then the 128-block implicit
method, then the 8-block implicit method.

6. REFERENCES

This work is part of the PhD thesis of R.
Winkelmann.
1. J. Häuser, R. D. Williams and W. Schröder,

Parallel Computational Fluid Dynamics in
Complex Geometries, p. 858 in “Computa-
tional Fluid Dynamics Review 1995”, eds.
M. Hafez and K. Oshima, Wiley, 1995.

2. J. Häuser, R.D. Williams, H.-G. Paap, M.
Spel, J. Muylaert and R. Winkelmann, A
Newton-GMRES Method for the Parallel
Navier-Stokes Equations, in “Proceedings of
CFD95”, Pasadena, CA, eds. S. Taylor et.
al., Elsevier North-Holland, Amsterdam,
1995.

3. J. Häuser, J. Muylaert, M. Spel, R. D. Will-
iams and H.-G. Paap, Results for the
Navier-Stokes Solver ParNSS on Workstation
Clusters and IBM SP1 using PVM, p. 432 in
“Computational Fluid Dynamics”, Eds. S.
Wagner et. al., Wiley, 1994.

4. J. Häuser and R. D. Williams, Strategies for
Parallelizing a Navier-Stokes Code on the
Intel Touchstone Machines, Int. J. Num.
Meth. Fluids, 15 (1992) 51.

5. P. N. Brown and Y. Saad, Hybrid Krylov
Methods for Nonlinear Systems of Equations,
SIAM J. Sci., 11 (1990) 450.

6. K. Ajmani, W. F. Ng, M. S. Liou, Precondi-
tioned Conjugate-Gradient Methods for the
Navier-Stokes Equations, J. of Comp. Phys.,
110 (1994) 68-81.

Figure 2: Load balance diagrams
for the block-implicit schemes. The
area ratio of the filled to the
outline blocks is proportional to
the time spent solving that block.

128 Blocks

32 Blocks

8 Blocks

