
Accurate Parallel Integration of Large Sparse
Systems of Di�erential Equations

Donald J. Estep1 and Roy D. Williams2

Abstract

We describe a MIMD parallel code to solve a general class of ordinary di�erential
equations, with particular emphasis on the large, sparse systems arising from space
discretization of systems of parabolic partial di�erential equations. The main goals of
this work are sharp bounds on the accuracy of the computed solution and
exibility of
the software.

We discuss the sources of error in solving di�erential equations, and the resulting
constraints on time steps. We also discuss the theory of a posteriori error analysis
for the Galerkin �nite element methods, and its implementation in error control and
estimation.

The software is designed in a matrix-free fashion, which enables the solver to e�ec-
tively tackle large sparse systems with minimal memory consumption and an easy and
natural transition to MIMD (distributed memory) parallelism. In addition, there is no
need for the choice of a particular representation of a sparse matrix. All memory is
dynamically allocated, with a new expandable array object used for archiving results.

The implicit solution of the discrete equations is carried out by replaceable modules:
the nonlinear solver module may be a full Newton scheme or a quasi-Newton; these in
turn are implemented with a linear solver, for which we have used both a direct solver
and QMR, an iterative (Krylov space) method.

Three example computations are presented: the Lorenz system, which has dimen-
sion three and the discretized versions of the (partial-di�erential) bistable equation in
one and two dimensions. The Lorenz system demonstrates the quality of the error esti-
mation. The discretized bistable examples provide large sparse systems, and our precise
error estimation shows, contrary to standard error estimates, that reliable computation
is possible for large times.

1 Introduction

We consider the numerical time integration of systems of ordinary di�erential equations
(ODEs) of the form (

_y = f(y; t); t > 0;
y(0) = y0 2 IRM :

(1)

We are particularly interested in large sparse systems, meaning that the Jacobian of f with
respect to y is a sparse matrix. Such systems often arise from the space discretization of
systems of ordinary and parabolic partial di�erential equations (PDEs) such as

ut �r � (Dru) = F (u); (2)

1School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, estep@math.gatech.edu
2Center for Advanced Computing Research, California Institute of Technology, roy@caltech.edu

1

posed on a domain that is a product of a time domain t > 0 with a spatial domain
 2 IRd

of dimension d = 1, 2, or 3. Here, u represents a vector of m unknown functions, so
u : IRd ! IRm; F is the reaction term; and D is the di�usion term. F is a vector-valued
function of u and ru as well as space and time and D is a semi-positive de�nite m �m
matrix-valued function of u and space and time. The value of u is speci�ed at the beginning
of the time interval, and by Dirichlet or Neumann boundary conditions on subsets of @
 as
required.

Many physical phenomena are described by systems of reaction-di�usion equations; well-
known applications occur in chemistry [20], materials science [22],
uid
ow [2], and pop-
ulation dynamics [19]. The interaction between the nonlinear reaction and the di�usion
gives rise to interesting behavior such as �nite time blowup, long time behavior such as
metastability, and localized behavior such as fast transients, steep fronts, and pattern for-
mation. The variety of applications and interesting solutions have excited much interest in
the engineering and mathematical communities, but the source of the interesting behavior,
i.e. the nonlinearity, also makes the mathematical analysis of solutions exceedingly di�cult
in general.

For this reason, it is tempting to turn to numerical analysis of the di�erential equations
in order to determine something about the solutions. Yet, this poses a new set of di�culties
because relatively little is known in mathematical terms about whether accurate numerical
solutions can be produced for such problems. The nonlinear nature of the problems often
deters convergence analysis, and even when possible, convergence analysis usually depends
on unveri�able assumptions such as the existence of high-order derivatives of solutions.
Moreover, standard error bounds are unsatisfactory in practical terms because they depend
on derivatives of the solution, which are unknown, and usually include a factor that grows
exponentially with time, making the bounds meaningful only for a short initial transient
period. In short, most of the numerical results in the literature are missing even a rough
quantitative estimate of the size of the error. This is particularly troublesome in this
area because so little is known about the solutions themselves, increasing the reliance on
numerical methods \working" as desired.

In some applications, the goal is to measure characteristics of a collection of solutions
rather than following particular solutions accurately. An example is the class of highly
chaotic systems obtained in molecular dynamics studies, where it is hoped that averages
computed over numerical trajectories are approximations of averages of a thermodynamic
ensemble of exact trajectories. There is little mathematical analysis to support this leap
of faith however. Moreover, it appears that there are at least two ways to compute such
averages: to follow one trajectory for an unrealistically long time period or to follow many
trajectories over a period of time for which accuracy is guaranteed. Without further as-
sumption, there is no reason to believe that these yield equivalent results. In the latter
choice, accurate computation of individual trajectories is fundamentally important.

We attempt to deal with these problems by using adaptive �nite element methods with
error control based on feedback from the computation. The error control rests on a rigorous
theory of a posteriori analysis in which the error is bounded by computable or approxi-
matible quantities that depend on the numerical solution (rather than the unknown true
solution). The error estimators indicate the proper choice of resolution to achieve the re-
quired accuracy, while the use of adaptive meshing enables the computational resources to
be used where needed in order to be e�cient. The theory has been worked out completely

2

for linear parabolic problems [7]; there has been much progress on systems of ODEs of
�xed dimension [9], [11] (these references also contain a comparison of this new theory to
classical theory); and also some work on nonlinear parabolic problems [8]. However, there
are important issues remaining to complete the theory for ODEs (which we describe below)
and much work remaining to be done for systems of reaction-di�usion equations.

The main deterrence to the widespread use of adaptive methods in PDEs is the com-
putational complexity required to code them. We believe that it is possible to reduce the
implementation advantage of simple explicit methods over adaptive methods for the gen-
eral user because many ingredients of adaptive codes for di�erential equations are common
to all sorts of problems. Making these ingredients accessible in a general way reduces the
overhead of implementation. In other work, we have shown that the complexity of adaptive
spatial discretization can be managed by a code such as DIME [25], or more generally with
a Voxel Database [24]. In this paper, we concentrate on adaptive time discretization, and
in particular, accurately solving the ODE in time that results from the space discretization
of a PDE.

In our view, it is proper for numerical analysis to address not only problems in approx-
imation of functions and computations of numbers, but also the ways in which numerical
algorithms are implemented on real hardware. Computer science and numerical analysis
should evolve together. In particular, we have found that designing a code with parallelism
in mind ab initio is no more di�cult than designing a sequential code to implement the
mathematical theory. This is in contrast to the usual di�cult situation of `parallelizing'
an existing sequential code. Our adaptive ODE code is designed to be run on a MIMD
parallel computer, [15] which includes massively parallel machines, as well as on clusters of
workstations communicating by Ethernet.

This paper has three objectives. First, we describe an adaptive numerical method to
solve sparse systems of ODEs. The second objective is to discuss the implementation of
these procedures into a
exible and portable software structure, so that it runs e�ciently
on many processors of a MIMD parallel computer. Third, we describe the application of the
a posteriori theory of adaptive error control for ODEs developed in [9], [11] to systems of
large dimension and then present the results of numerical experiments on several reaction-
di�usion problems that address the issue of whether accurate computation is indeed possible.

2 Theory

2.1 Computational Error

2.1.1 Computational Order and Time Step Restrictions

There are four factors that a�ect the accuracy obtained by an approximation of the solution
of a nonlinear di�erential equation:

1. The stability of the exact solution. The stability of the solution is a global
property determining how nearby perturbations behave as time elapses; in this case,
the perturbations of concern are the errors induced by the numerical discretization.

2. The nonlinear nature of the problem. The nonlinear equations that determine
the solution at a given point are solved by linearizing the equations around one or
more points where the solution is known.

3

3. The quality of the discretization. The smoothness of the solution is a local
property determining how well it can be approximated by functions with a �nite
number of degrees of freedom over a given interval, such as those used by a numerical
method.

4. The properties of the numerical method. The fourth consideration has to do
with the stability properties of the numerical method. Recall that in the classical
theory of numerical methods for PDEs, numerical stability is a necessary condition
for convergence.

In adaptive error control, we want to choose the time steps according to the smoothness
and the stability properties of the solution, and we desire to avoid, as much as possible,
restrictions due to solving a nonlinear problem and numerical stability. In consideration of
(4), explicit methods require the Courant-Friedrichs-Levy (CFL) condition on the relation
between the time step and the space mesh spacing to be satis�ed, regardless of the pointwise
behavior of the solution. Hence, we employ implicit methods and avoid restraints imposed
by numerical stability altogether. Having chosen to use an implicit method, we generally
must solve a set of nonlinear equations, and there is a choice between �rst-order, �xed
point iterations that are easily implemented, and higher-order methods, such as Newton's
method, that cost more per iteration. If we choose a stepwise-cheap, �xed-point iteration,
there is again a severe step size restriction in order to obtain convergence. This restriction
can be as severe as the CFL condition for explicit methods. On the other hand, Newton's
method can converge for large steps, provided that a good initial guess for the iteration is
provided. Of course, because such a guess is usually computed from previous values of the
approximation, this in turn gives a new restriction on the step size. However, this choice at
least gives the possibility of allowing adjustment of step sizes.

2.1.2 The Error of Interpolation

With regard to factors (1) and (3), the chief tool for estimating the error of an interpolant of
a given function is Taylor's theorem. For example, if y has one continuous derivative on an
interval [t1; t2], with k = t2 � t1, and Y denotes the constant Taylor polynomial computed
at t1, then

ky(t2)� Y (t2)k � k max
�
ky0(�)k; (3)

while if y has two continuous derivatives and Y denotes the linear Taylor polynomial com-
puted at t1,

ky(t2)� Y (t2)k � 1

2
k2 max

�
ky00(�)k: (4)

In each case, the bounding quantity has four factors:

� a constant which we shall call a `stability factor', which is 1 in the examples above;

� an \interpolation constant" that depends only on the order of the approximation, it
is 1 and 1=2 respectively;

� a power of the time step; and

� a quantity depending on derivatives of the solution.

4

A similar result holds for other polynomial-based interpolants of y on the interval, though
the interpolation constant may have a di�erent value. In general, the error is indeed the same
order as error bound: in which case, it is said to be sharp. This is an important property
of error bounds used for adaptive error control since a bound that is much larger than
the error most of the time leads to ine�cient computations. Error bounds for appropriate
interpolants of the solution are the benchmark by which the error bounds of a �nite element
approximant are judged; bounds such as (3) and (4) are called optimal in the terminology
of the �nite element method.

2.1.3 A Priori Error Bounds

Taylor's theorem is also the main tool used to study the convergence properties of numerical
methods for ODEs. The resulting a priori error bounds are similar in form to (3) and (4),
bounding the error in terms of a quantity consisting of four factors: � the \stability factor";
� the \interpolation constant"; � a power of the mesh spacing; and � a quantity that depends
on derivatives of the solution.

For example, the classic error bound for the backward Euler approximation Yn for (1)
computed on a set of nodes t0 = 0 < t1 < t2 < � � � < tN = T with step size k is

ky(tn)� Ynk � eLT � 1

L

1

2
max
0���T

ky00(�)k k; 0 � n � N; (5)

where L is the Lipschitz constant of f , which is a measure of the smoothness of f . A priori

error bounds are derived by considering the question:

How well does the exact solution satisfy the discrete equations?

There is, however, an important di�erence between the interpolation of a given func-
tion and the approximation of the solution of a di�erential equation. In the �rst case, the
interpolant is computed with full knowledge of the function, and the error in one interval
has only a local e�ect. This is the reason that the stability factor is one. In the case of
approximating a solution of a di�erential equation, errors generally propagate and accumu-
late throughout the domain. This di�erence is re
ected in the error bounds. The stability
factor in (5) grows exponentially in time. Note that the accumulation can also a�ect the
number of derivatives required in the bound. For example, compare (3) and (5), both of
which bound the error of an approximation with one degree of freedom on each interval.
This is known as loss of optimality of the error bound.

An a priori bound depends on general properties of the solution and the approximation.
For this reason, it is not computationally useful. Most obvious is the dependence of the
bound on unknown derivatives of the solution. The a priori nature is also re
ected in
the exponentially increasing factor, which is determined by the most pessimistic rate of
accumulation of errors. In general, this exponential factor is far too pessimistic for the bound
to be computationally useful. For example, in linear parabolic homogeneous problems, there
is no accumulation of error. In problems with a conserved quantity given by a norm of the
solution, the rate of error accumulation appears to be only polynomial in time on average.
In general problems, there may be relatively brief periods of exponential growth of error,
but rarely as fast as suggested by the worst case. For example, in
uid
ow problems, L
depends on the Reynolds number and the term that is exponentiated reaches size 105�1010

in an extremely short time, implying that accurate computation is essentially impossible.

5

2.1.4 A Posteriori Error Bounds

Another approach to error control is based on a posteriori error bounds that involve com-

putable quantities. This kind of bound is derived by answering the question:

How well does the numerical solution solve the di�erential equation?

A posteriori error bounds consist of four factors:

� a \stability factor" S1(t) that measures the accumulation of error;

� a constant Ci determined only by the order of the method;

� a power of the mesh size kn; and

� a quantity that measures the residual error by the regularity of the approximation.

For example, an a posteriori error bound for the backward Euler scheme is:

ky(tn)� Ynk � S1(tn) max
1�m�n

Ci

�

Ym � Ym�1
kn

+ kft(Ym; tm)k
�
kn; 0 � n � N; (6)

where ft denotes
@f
@t . The residual error measures how well the approximation satis�es the

di�erential equation over one step.
In the a posteriori theory outlined below, S1(t) is determined by the solution of a dual

problem which is solved backwards in time. The dual problem is obtained by linearizing
the weak formulation of the di�erential equation around the solution to be approximated.
The linear dual problem reads as follows: for 1 � n � N , �nd zn such that(

� _zn = fy(y; t)
�zn; tn > t > 0;

zn(tn) = e(tn)=jje(tn)jj; (7)

where fy denotes the Jacobian of f with respect to y while f�y denotes its transpose and
e(tn) denotes the error at time tn. Note that this problem is computed \backwards", but
there is a corresponding change in sign. The stability factor is de�ned as

S1(tn) =

Z tn

0
jj _zn(t)jjdt: (8)

Since (7) and (8) depend on the solution, the stability factor is not computable. S1(t)
generally varies with time greatly and using a crude bound on S1(tn) in a computation is
not practical for the reason above. Hence, in practice (7) and (8) are approximated during
a computation.

We remark that the dual problem arises naturally when considering the weak formu-
lation of a di�erential equation. The analysis is very general in the sense that e�ects of
perturbations in initial data or in the nonlinearity can be associated to other stability factors
through similar arguments.

6

2.2 Parallel Computing

The mathematical statement of the adaptive error control algorithm outlined below is writ-
ten in terms of matrices, vectors, and scalars. These classes are related by the following
operations: a matrix may be used to transform a vector into another, there are vector func-
tions of vectors, and there is a norm function that converts vectors to scalars. We use this
simple description to design a parallel ODE solver for a MIMD model of parallel computing
in which each processor has its own local memory and communication between processors
is by message passing.

A basis of the M -dimensional vector space of equation (1) is partitioned among the
processors, so that each processor is responsible for a subspace of the full phase space. We
refer to IRM as the global vector space and the subspaces for which a processor is responsible
are the local vector spaces. Scalars are stored redundantly by each processor.

The chief issue in e�cient implementation on a parallel computer is the communication
between processors. For example, program
ow for the ODE solver is determined by norms
of vectors in IRM . As long as the same value of the norm is delivered to all processors at
appropriate times, they all follow the same
ow of control. This property makes the ODE
solver an SPMD (Single Program, Multiple Data) program. The norm of a global vector is
the root mean square sum of the norms of the local vector spaces, thus the calculation of a
norm requires communication between the processors. It is accomplished with a combine,
or global sum operation [15], on a parallel computer.

The other operations requiring communication are the calculations of the function f
and the Jacobian of f from equation (1). These in turn often require a matrix-vector
product. Since e�cient implementation of matrix-vector products and vector functions are
completely problem dependent, we assume that these are handled by the user of the ODE
solver. The upshot is that the code for the parallel ODE solver is identical to the code for
the sequential ODE solver. This is also true for the nonlinear solver and the iterative linear
solver, which are also pure SPMD programs.

In a fully space and time adaptive code for a PDE, the user interface modules are
replaced by the adaptive space discretization module. This module has the responsibility
for dealing with the complicated parallel issues such as redistributing the vector spaces
across the processors (load balancing) when the space discretization is changed. In this
setting, the splitting into subspaces is equivalent to domain decomposition of the PDE.

2.3 Software Structure

A partial di�erential equation solver has several components:

� Space discretization of the PDE yielding a large, usually sparse system of ODEs,

� An implicit integration scheme for the ODE system,

� A solver for the resulting nonlinear system of equations, such as Newton's method,

� A solver for the resulting system of linear equations.

A code that implements these mathematical techniques is \
exible" if it is straightforward
to replace one module with an implementation of another technique. For example, it may be

7

desirable to replace the nonlinear solver with a quasi-Newton method, or use a di�erent im-
plicit solution scheme for the ODE module. It also means that the problem is implemented
in such a way that di�erent patterns of sparsity can be handled with equal ease.

Flexibility reduces, as always, to a speci�cation of interfaces. If the interfaces between
software modules are well speci�ed, then each module can function independently.

2.3.1 Matrix Representations

A critical issue in the interfaces between modules is the speci�cation of the variables, and in
particular, the large matrices resulting from discretization. A full matrix is usually de�ned
by the number of rows, the number of columns, and a pointer to an array of the matrix
elements. In FORTRAN, it is usual to supply another integer, the \�xed" size to which the
(work) array is dimensioned. However, this representation of a full matrix, although easy
to understand and implement, is not practical for the very large, sparse ODE systems.

When the matrix is sparse, the representation has to be more sophisticated if the sparse-
ness is to be used to advantage. One representation is based on specifying which matrix
elements are non-zero, then giving the values of those elements. For a given representation,
there must be a library available to do such operations as multiplication by a scalar or
addition of matrices, together with a method of constructing a matrix, a linear solver, and
so on. Such sparse matrix representations generally take up a great deal of memory and put
stress on the memory allocation system. In addition, since one of our objectives is to run
the solver on massively parallel processors, such a sparse-matrix library must be available
for massively parallel platforms.

Another possibility is to \hard-code" a particular sparsity structure into the code. For
example, in solving a PDE that involves the Laplace operator on a square mesh, there might
be code such as

Ax[i][j] = 0.25*(x[i+1][j] + x[i-1][j] + x[i][j+1] + x[i][j-1]).

It is reasonable for this to appear in the software describing the space-discretization of
the PDE. However, it should not be used in the software responsible for solving the ODE
system, because it is then di�cult to use the software to handle discretizations with a
di�erent stencil. Furthermore, it is di�cult to write the software in a modular form because
this structure is present throughout the code.

Coding the solution of large linear systems on a parallel computer raises another consid-
eration for the choice of matrix representation. Direct methods such as LU decomposition
are di�cult to parallelize e�ciently, and they also �ll in the sparse matrix. On the other
hand, iterative solvers parallelize well, since the only parts that require consideration are the
matrix-vector product and the norm calculation. Iterative solvers require a good approx-
imate guess to be e�cient, but this is readily available when integrating an ODE system.
For example, the solution at the last timestep, or the solution derived from a less accurate
solution method, such as an explicit or multistep solver, are both good possibilities.

We have implemented the parallel ODE solver with matrix-free methods [18] [4], where
matrices are not assembled as collections of numbers, but are instead passed around as
functions. The kernel of matrix-free methods may be stated quite simply:

The fundamental concept is a linear transformation,

not the matrix that represents it.

8

Iterative methods access the matrix only as a transformation on the vector space, hence
a matrix can passed between software modules as a function, not an array or a structure
pointer. For example, the declaration for the QMR solver (an iterative solver for nonsym-
metric linear systems) looks like:

QMR_linear_solve (

int n, /* dimension of system */

int (*A)(), /* matrix multiply method */

int (*At)(), /* transpose of mmm */

real (*norm)(), /* vector norm function */

real *x, /* in: initial guess; out: solution */

real *b, /* right hand side vector */

real tolres /* tolerance criterion for solution */

)

The arguments A and At aremethods of multiplying a vector by the matrix, and its transpose,
respectively, and norm is the function that produces an appropriate norm for vectors. The
linear solver has no knowledge of the structure of the matrix; it only needs to pass vectors
to the matrix and then receive the transformed vectors back again.

Also note that the parallelism is contained in the matrix-multiply methods and in the
norm method. It is in these functions that communication between processors occurs, not in
the linear solver. Thus, the linear solver can be tested on a workstation, run on a massively
parallel machine without change, and reused for other applications.

2.3.2 Linear Solvers

As noted above, an implicit scheme for a set of ordinary di�erential equations reduces to a
set of nonlinear equations, and these are solved by a Newton or quasi-Newton algorithm,
which in turn requires the solution of large, sparse sets of linear equations.

In the case of the PDEs we consider, the linear equations are in general � not symmetric,
� not positive-de�nite, and � not diagonally dominant. To solve such systems e�ciently, we
use the QMR (Quasi-Minimal Residual) method [16].

QMR is a Krylov-subspace technique which requires only the operations of multiplication
by the matrix and its transpose, and a scalar product. Because the matrix is non-symmetric,
there is no short-recurrence sequence of orthogonal vectors. In the GMRES method [21],
a long-sequence recurrence is used, which consumes signi�cant memory unless restarts are
frequent; alternatively, the BiCG [1] method uses two mutually orthogonal sequences of
vectors as a basis, which can be done with a short recurrence, so that the matrix is reduced to
a tridiagonal system. QMR follows BiCG by using two sequences of vectors, but QMR solves
this reduced system in a least-squares sense, rather than with an implicit LU decomposition.
This, together with lookahead techniques, provides more robustness than BiCG, but without
the memory overhead of GMRES.

Note that the QMR method is simply a choice of one among many Krylov and direct
methods for the solution of linear equations. The ODE code also has a full solver based on
Gaussian elimination, and other methods can be easily substituted.

9

2.3.3 Di�erentiable Vector Fields

The matrix-free idea can be extended to non-linear problems. The nonlinear solver, for
example, is designed to solve

Fnonlin(u) = 0; with Fnonlin : IRn ! IRn: (9)

Besides the function Fnonlin itself and an initial guess for the solution, the solver also needs
the Jacobian (derivative) matrix of Fnonlin and its transpose, and a norm function for the
vector space that contains u. We shall call this collective object a di�erentiable vector �eld

or V�eld.
The ODE solver works with a V�eld that we call Fode, since the statement of the ODE

is couched in such terms, as in equation (1). When the ODE is discretized in time, a set of
nonlinear equations has to be solved: this entails passing a V�eld Fnonlin to the nonlinear
solver. In the case of the backward Euler step, the relationship between these two is simply

Fnonlin(u) =
(u� uold)

k
� Fode(u); (10)

where k is the timestep and uold is the known value of u at the current time level.
A V�eld object includes the Jacobian of the vector �eld. The Jacobian is a matrix in the

sense of the section above: it is a linear transformation on vectors. For the above example,
we simply have

Jnonlin(w) = w=k � Jode(w) (11)

so that the action of the Jacobian of the nonlinear problem on a vector is de�ned in terms
of the action of the Jacobian of the di�erential equation. This separation seems trivial for a
method as simple as the backward Euler, where it would be easy to combine directly the code
for the di�erential equation (f : IRM ! IRM in (1)) with the scheme used for numerical
solution of the equation. However, more complex schemes, where the dimension of the
system to be solved is a multiple of M , this direct approach becomes increasingly tedious
and error-prone. Add to this the further di�culty of evaluating the Jacobian transformation,
and the V�eld approach is clearly superior.

2.3.4 Preconditioning and Interface Expansion

The de�nition of a matrix purely in terms of its linear action on vectors yields a clean
programming model in which each module has a well-de�ned function and the interfaces
between modules are narrow and unambiguous. To implement a linear solver for symmetric
matrices, such as Conjugate Gradient, this is all that is needed. For nonsymmetric systems,
the transpose operation must be added to the module interface.

Predictably, these iterative linear solvers do not attain their full potential in their sim-
plest forms. A preconditioner is needed, which is in some sense an approximation to the
matrix that is easily inverted. For example, one simple preconditioner is diagonal scaling,
where the matrix is \approximated" by ignoring its o�-diagonal elements. To use this, the
de�nition of a matrix must be expanded, so that there are three methods: the action of the
matrix, the action of the transpose, and the action of the inverse of the diagonal.

Although preconditioners have been suggested [4] that are purely matrix-free, such as
the Incomplete Orthogonalization Method [17], it is still generally true that more e�ective
preconditioners require more complex software interfaces.

10

2.3.5 Archiving the Solution

To compute the error bound on the approximate solution of the ODE, we solve a linear
\dual" system which is related to the solution of the original ODE. The dual system is
solved backwards in time and requires storage of the time history of the approximation. We
have implemented an archive object for the storage of this time history, using a dynamically
allocated linked list of memory blocks for storage, with adjustable block size. The archive
assumes that the data is accessed in time order, so it searches for data �rst in the block in
which data was previously found, then resorts to a binary search.

2.4 The Galerkin Finite Element Methods for ODEs

We use Galerkin �nite element methods for the numerical integration of (1). The Galerkin
formulation makes the derivation of a posteriori error bounds natural. The details of these
methods are discussed in [6], [9], and [11].

2.4.1 The Methods

The �nite element method is based on a weak formulation of (1) that reads: �nd the
di�erentiable function y on [0; T] such that

(R T
0 (_y; v)dt =

R T
0 (f(y(t); t); v(t))dt;

y(0) = y0;
(12)

for all piecewise continuous functions v on [0; T], where (�; �) denotes the standard dot
product. We partition [0; T] into N intervals (tm�1; tm] with timestep km = tm � tm�1
and compute the approximation Y as the polynomial on each interval that satis�es (12)
for test functions in an appropriate �nite dimensional test space of polynomials. There
are two classes of method, distinguished by whether the approximation is continuous at
interval boundaries or not: the continuous Galerkin (cG) approximation is continuous and
the discontinuous Galerkin (dG) is discontinuous. We use the notation dG0, cG1, dG1,
cG2, etc., where the last digit is the polynomial order of the basis.

The exact formulas are given in Appendix A. For example, the simplest scheme, dG0,

gives a zero-order polynomial Y = Ym on the mth interval, yielding(
Ym =

R
Im

f(Ym; t) dt+ Ym�1;

Y0 = y(t0):
(13)

Note that the backward Euler scheme is obtained by applying the rectangle quadrature
rule to the integral in (13). In general, computing the Galerkin approximations involves
analytically computing integrals of the formZ

f(polynomial in t; t) dt:

There is an advantage to computing these integrals analytically, if possible, because the
errors may accumulate more slowly than if quadrature is used. However, it may be di�cult
or impossible to do this, and so a general-purpose code employs quadrature to evaluate the

11

integrals numerically. Depending on the choice of quadrature rule, the result is a Runge-
Kutta scheme. Conversely, many Runge-Kutta and multi-step schemes can be written as a
dG or cG approximation with the appropriate choice of quadrature.

The two criteria for choosing a quadrature rule are to preserve the order of convergence
and preserve the stability properties of the method. We also desire to use as few func-
tion evaluations as is consistent with these two points. The best choice of interpolatory
quadrature rule for the dG method uses the Gauss points in each interval. The choice of
quadrature for the cG method is not as clear because preserving the conservation property
depends both on the form of the problem and on the conserved quantity. For the cG1
method, we employ the trapezoidal rule, but some problems may call for a di�erent choice.
Exact formulas for the quadrature rules we use are given in Appendix A.

2.4.2 Properties

We summarize the results in [9] and [11]. The cG and dG methods are implicit, sti�y A-
stable, one-step methods. The stability properties of the dG methods make them e�ective
for sti� problems in particular, while the cG approximations often inherit the property of
preserving an conserved quantity if one is associated with the solutions of the di�erential
equation.

The cGq and dGq methods converge with up to order q + 1 on each interval Im. More
precisely,

max
0�t�tn

ke(t)k � C
�
1 + Ltne

CLtn
�
max
m�n

�
min
p�q+1

kpmmax
Im

ky(p)k
�
; 1 � n � N: (14)

Note that these results are optimal in order. These methods also have a superconvergence

property at time nodes when the mesh does not change too much. Namely, the dGq method
converges with order 2q+1 at the nodes ftng when y has 2q+1 continuous derivatives and
the cGq method converges with order 2q at nodes when y has 2q continuous derivatives.
The exact forms of the bounds are analogous to (14). See [6].

2.4.3 A Posteriori Error Bounds

A posteriori error bounds are the basis for adaptive error control decisions. We recall that
zn solves the dual problem (7) with initial data given at tn, and we de�ne the stability
factors,

S(tn) = S(tn; y) = kz(0)k;

Si(tn) = Si(tn; y) =
R tn
0 kz(i)n (s)kds; i � 0:

In the following, we use q to denote the degree of the dG or cG approximation and r to
denote the degree of the quadrature used to compute the approximation. We use p to denote
the possible order of convergence of the approximation, and l to denote the possible order
of convergence of the quadrature. We use Cq;p and Cr;l to denote interpolation constants
that depend only on q, p and r, l respectively. These are introduced to make the stability
factors dimensionless. Then,

je�n j � S1(tn) max
1�m�n

(
min
0�p�q

Cq;p

(
jj[Y]m�1jj+ kp+1

m

 dpdtp f(Y (t); t)

Im

))
(15)

12

+ S0(tn) max
1�m�n

(
min
0�l�r

Cr;l k
l
m

 d
l

dtl
f(Y (t); t)

Im

)
:

The �rst term on the right measures the error of the Galerkin discretization and is optimal
in order. The second term on the right measures the error from using the quadrature. It
is not optimal in order, and also the quadrature residual errors accumulate at a di�erent
rate than the original discretization error. See [14] for further discussion. The original
discretization error arises because we seek an approximation of the solution y in a �nite
dimensional space. The quadrature error arises because we sample the
ow only at discrete
points (i.e., at the quadrature points). It is important for the e�ciency of the error control
to take into account the two sources of error independently, as this bound allows.

The superconvergence results have a similar form, except that high-order stability factors
Sp, p � 2 are involved, see [6], [9], [11]. We summarize these results in a convenient form as

ke�n k � max
1�m�n

min
1�p�q̂

Sp(tn) R(q; p; Y;m) + max
1�m�n

min
0�p�q

1�l�r

Sp(tn) Q(r; l; q; p; Y;m); (16)

where q̂ = q for cGq and q + 1 for dGq, and the local discretization residual R(q; p; Y;m)
and the local quadrature residual Q(r; l; q; p; Y;m) are de�ned as appropriate.

These results hold if f is Lipschitz continuous with constant L, and in addition for the
methods of order two and more, fy is Lipschitz continuous as well. We also assume that k
is su�ciently small, so that the local residual error is smaller than a �xed constant.

2.4.4 Approximation of the Stability Factors

The stability factors cannot be computed directly because (7) requires the solution y. It is
possible to bound the stability factors a priori, however as explained above, the resulting
bounds are too crude to be used in error control. Therefore, we compute approximate
stability factors Sp(tn; Y), where we consider the linear problem (7) obtained by linearizing
around the approximation Y and use a guess for the initial condition e(tn)=ke(tn)k. The
resulting system to be solved is: for 1 � n � N , �nd Z = Zn such that(

� _Z + fy(Y; t)
�Z = 0; tn > t > 0;

Z(tn) = dn; kdnk = 1:
(17)

We then approximate Z using the same scheme and the same step sizes used to compute
Y , with the steps possibly altered to take into account the convergence of the linear solver.
Finally, we compute Sp(tn; Y) by using the approximate values of Z in quadrature formulas
for the integrals de�ning Sp(tn; y).

The reliability of the error control hinges on the quality of the approximation Sp(tn; Y),
which in turn depends on the e�ect of the two steps used to change (7) into the computable
problem (17). Based on computations on many examples (see [9] and [11]), we believe that
these two steps are justi�ed. We express this as two conjectures:

Conjecture 1: The stability factors computed from (17) using the approximation Y instead
of (7) using the solution y are good approximations to the true stability factors when Y is
a good approximation of y.

13

Conjecture 2: The stability factors are relatively insensitive to the choice of initial values
for (17) when computed over a su�ciently long time interval on many systems, and good
values can be obtained using a small number of initial values.

We note that the stability factors do not need to be computed with great accuracy
(order of magnitude is su�cient) for the purposes of accurate error estimation and control.
Under general conditions, Sp(tn; Y) converges to Sp(tn; y) as the tolerance tends to zero,
provided the true initial data e(tn)=ke(tn)k is used in the backward computation. As far
as Conjecture 2, on certain classes of problems, such as contractive problems, we can prove
that the choice of initial data is immaterial. We discuss this issue further below.

The issue of the approximation of the stability factor is the last issue remaining to
complete this theory for ODEs of �xed dimension. The analogous issues also exist for
PDEs, with the added technical di�culties associated to approximating in�nite dimensional
systems.

The approximations of the stability factors represent the majority of the overhead that
adaptive error control requires in terms of computing time. This overhead, typically repre-
senting 10-90 percent of the total time depending on the stability of the solution and the
number of points at which the error control is imposed, appears to be necessary to achieve
error control e�ciently and reliably. However, neither of the alternatives appear reasonable
to us: using a priori bounds on the stability factors, which are generally so large as to pre-
clude computation altogether; or ignoring the e�ects of accumulation of error, which means
that quantitative error control is simply absent. Moreover, it turns out that knowledge of
the stability factors themselves indicate much useful information about the solutions, as we
demonstrate below.

We recall that there are also interpolation constants Cq;p and Cr;l in the a posteriori

bounds. These constants depend on the order of convergence, but the exact values are
a�ected by the inequalities used in the derivation of the bounds. It would be very tedious to
trace through the analysis and determine exact values. Instead, we compute linear problems
with known solutions and numerically determine values that make the error bounds the same
size as the error. We use these values in all subsequent computations.

2.5 The Algorithm for Adaptive Error Control

Given a tolerance TOL, the ideal goal of the adaptive error control is to satisfy

ke�n k � TOL; (18)

for n � 0 while doing as little computational work as possible. We call TOL the global error
tolerance. To achieve (18), we compute the approximation so that

max
1�m�n

min
1�p�q̂

Sp(tn) R(q; p; Y;m) + max
1�m�n

min
0�p�q

1�l�r

Sp(tn) Q(r; l; q; p; Y;m) � TOL; (19)

for n � 1. Provided the assumptions of the a posteriori analysis hold, (18) is guaranteed to
hold if (19) holds.

Solving the practical optimization problem of minimizing the computational work while
satisfying (19) is di�cult and we simplify the problem in several ways. First, we program
only the dG0, cG1, and dG1 methods, giving a range of �rst, second and third order

14

schemes. In general, higher-order convergence in methods for (2) is not expected because
of the di�culty of satisfying high-order compatibility conditions at the boundaries and the
regularity constraints on the solutions. There are no superconvergence results for the dG0
and the cG1 methods, so in those cases, the only stability factors that occur are S0(t)
and S1(t). S2(t) is involved in the dG1 superconvergence result, but we use a Lipschitz
assumption to replace S2(t) by LS1(t). Equation (19) thus simpli�es to

S1(tn) max
1�m�n

min
1�p�q̂

R(q; p; Y;m) + S0(tn) max
1�m�n

min
0�p�q

1�l�r

Q(r; l; q; p; Y;m) � TOL; (20)

for n � 1. With these simpli�cations, minimizing the computational work is equivalent to
maximizing the step size for each interval. We achieve (20) by a two-stage process.

2.5.1 Local Step Size Control

We introduce a local discretization residual tolerance RTOL and a local quadrature residual
tolerance QTOL and compute Y so that on each interval Im, m � 1,

min
1�p�q̂

R(q; p; Y;m) � RTOL and min
0�p�q

1�l�r

Q(r; l; q; p; Y;m) � QTOL: (21)

On Im, we let p
0
m denote the order of the step in the minimum of the residuals fR(q; p; Y;m)gp

and l0m denote the order of the step in the minimum of the residuals fQ(r; l; q; p; Y;m)gl;p,
and we write

min
1�p�q̂

R(q; p; Y;m) = kp
0
m

m R0(Y;m) and min
0�p�q

1�l�r

Q(r; l; q; p; Y;m) = kl
0
m

m Q0(Y;m):

We achieve (21) by a prediction-correction iteration. Suppose that km;pred denotes a
predicted time step for Im. We compute Y jIm andR0(Y;m) and Q0(Y;m). If (21) is satis�ed,
we accept the step and compute forward with a new predicted step. If either inequality
is not satis�ed, we recompute from the previous time node with a new predicted step. In
both cases, the new predicted step is computed by

km;pred = min

(�
RTOL

R0(Y;m)

�1=p0
m

;

�
QTOL

Q0(Y;m)

�1=l0
m

)
:

2.5.2 Global Step Size Control

The local tolerances are chosen so that (20) holds, i.e.,

S1(tn) RTOL + S0(tn) QTOL � TOL; (22)

for n � 1. We compute the tolerances iteratively. We begin by setting RTOL = QTOL =
1
2TOL, assuming that S1(tn) = S0(tn) = 1. We compute to the �nal time, checking (22) at
each time node. If (22) holds at every node, then the computation has the desired accuracy.
If (22) is violated at some time steps, then we compute new tolerances

RTOL = min
n

1

2
TOL=S1(tn) and QTOL = min

n

1

2
TOL=S0(tn):

15

This is tantamount to assuming that the work associated to computing the approximation
and the quadrature is equal. We then recompute the entire approximation with the new
tolerances.

We emphasize that obtaining global error control at a time node means integrating a
linear problem of the same dimension as (1) over an interval of the same length as the node.
In practice, it may be su�cient to require global error control at some subset of the time
nodes, for example, only at the �nal point. In the code, the user de�nes a set of sample
times at which the global error is checked. The local step size control is maintained at every
time step, since the form of the a posteriori bounds requires this.

There are two other constraints on the choice of step size. If the Newton iteration does
not reach the user de�ned tolerance on the residual within ten or so iterations, the step is
recomputed with half the predicted step size. Likewise, if the linear solver fails to converge
with a residual error less than the tolerance, the steps are halved. In addition, there is a
user de�ned maximum step size.

3 Computational Results

We now describe some numerical experiments that illustrate aspects of the material pre-
sented above. First, we conduct various tests of the adaptive error control using the well-
known Lorenz system of ODEs. This is a good test problem for checking the accuracy
of the error control because it is low dimensional, yet is nontrivial. Then, we consider a
system of ODEs arising from space discretization of the bistable problem in one and two
space dimensions. The bistable problem is a well-known example of a reaction-di�usion
equation that has interesting behavior over long time intervals. We discuss the speedup
gained on a parallel computer for this problem, and present numerical evidence as to the
\computability" of the bistable problem over long time intervals.

3.1 The Lorenz System

In the early 1960s, the meteorologist E. Lorenz derived a simple model in order to explain
why weather forecasts over more than a couple of days are unreliable. The model is derived
by taking a three-element �nite element space discretization of the Navier-Stokes equations
for
uid
ow (the \
uid" being the atmosphere in this case). After a change of variables,
this gives a three-dimensional system of ODEs in time:8>>><

>>>:
x0 = ��x+ �y;
y0 = rx� y � xz;
z0 = �bz + xy;
x(0) = x0; y(0) = y0; z(0) = z0;

(23)

where �; r; and b are positive constants. These were determined originally as part of the
physical problem, but the interest among mathematicians quickly shifted to studying (23)
for values of the parameters that make the problem chaotic.

A precise de�nition of chaotic behavior is di�cult, but we point out two distinguishing
features: while con�ned to a �xed region in space, the solutions do not \settle down"
into a steady state or periodic state; and the solutions are data sensitive, which means
that perturbations of the initial data of a given solution eventually causes large changes in

16

the solution. In such a situation, numerical approximations always become inaccurate after
some time and it is important to determine this time in order to determine valid information
about solutions from computations. In fact, accurate computation can reveal much detail
about the dynamical behavior of the solutions, see [14].

We choose standard values � = 10, b = 8=3, and r = 28, and we compute with the dG1
method. In Figure 1, we plot two views of the solution corresponding to initial data (1; 0; 0).
The solutions always behave similarly: after some short initial time, they begin to \orbit"

(x0,y0,z0) = (1,0,0), final time = 30

absolute error tolerance = .5

x

-10

0

10

z

0

10

20

30

40

50

y-10
0

10
20(x0,y0,z0)

(a)

viewed from above viewed from below

viewpoint for (b)

(b)

x-20
-10

0
10

20

z

0

10

20

30

40

50

y

-20
-10

0
10

20

(x0,y0,z0)

viewpoint for (a)

Figure 1: Two views of a solution of the Lorenz system

around one of two points, with an occasional \
ip" back and forth between the points. The
chaotic nature of the solutions is this
ipping that occurs at apparently random times. In
fact, accurate computation can reveal much detail about the behavior of the solutions, see
[14].

We solve the Lorenz system using the dG1 method and compute the a posteriori er-
ror bounds at regular time intervals. To test the accuracy of the bounds, we compute an
\approximate" error by comparing the approximation from this computation to an approx-
imation computed with a residual tolerance that is 10�5 smaller. This brute force approach
should yield a good approximation of the true error because the a posteriori error bound
suggests that the approximation is accurate enough on the chosen interval to be within the
asymptotic regime of convergence. In Figure 2, we plot the approximate error together with
the a posteriori error bound versus time. There is remarkable agreement.

The standard a priori analysis yields a stability factor of size e99t, precluding accurate
computation beyond t = 0:5. This result bounds the exponential rate of error accumulation
by the maximum norm of the Jacobian of the ODE system (which is about 99), assuming
that the system is sensitive to the accumulation of error at the worst possible rate uniformly
in the phase space. Actually, the system has this sensitivity only in a very small region of the
attractor. In fact, the a posteriori error bound suggests that computations are meaningful
up to t = 30. The precise error bounds are due to the fact that the computational a
posteriori approach to error estimation measures the sensitivity of the system along the
actual trajectory by integration.

17

(x0,y0,z0) = (0,1,0)

t

0 5 10 15 20

E
rr

or
 a

nd
 B

ou
nd

10-6

10-5

10-4

10-3

10-2

10-1

100

101

approximate error
a posteriori error bound

Figure 2: An approximation of the true error and the computed error bound

The error bound shown in Figure 2 is a linear combination of several sources of error.
Each source is a product of a stability factor with the rate of production of the error; the
stability factor expresses the growth rate of the error once it is formed. The three types of
error growth that we consider here are:

� the e�ect of error in the initial conditions (measured by S(t));

� the discretization error that arises because the solution is not a piecewise polynomial
(measured by S1(t));

� the quadrature error that arises because the
ow is sampled at only discrete quadrature
points (measured by S0(t)).

In Figure 3, we plot the stability factors on a logarithmic scale versus time. The data
sensitivity of this problem is re
ected in the overall exponential growth. Note that the
factors do not grow uniformly rapidly and there are periods of time with di�erent data
sensitivity. Moreover, the overall average growth rate for S1(t) is approximately e0:92t, see
[14], nothing like e99t.

We now show numerical evidence that supports Conjectures 1 and 2 of Section 2.4.4
concerning the approximation of stability factors. In Figure 4, we plot S1(t) for various
trajectories that are computed with di�erent tolerances. In support of Conjecture 1, the
results suggest that it is su�cient to use the approximation instead of the (unknown)
solution to compute the stability factor. We see that the stability factors computed from the
trajectories with di�erent accuracies are equal up to time 19. As less accurate trajectories
begin to diverge grossly from the more accurate trajectories, di�erences in corresponding

18

t
0 5 10 15 20 25 30

St
ab

il
it

y
Fa

ct
or

s

10-1

101

103

105

107

109

S(t)
S0(t)
S1(t)

Figure 3: Three stability factors for the Lorenz system

stability factors become apparent. Even so, the stability factors remain roughly the same
magnitude.

In Figure 4b, we plot the approximation to S1(t) computed for three di�erent choices of
initial data for the dual problem (17). These data support Conjecture 2, that the stability
factor is relatively insensitive to the choice of initial data for the backward problems.

For small dense systems, it is sometimes more e�cient to solve for the fundamental
solution matrix of the stability system (17), with Z starting at tn as a M �M identity
matrix, rather than solving (17) for several initial values. This is because computing the
fundamental solution means that (17) does not have to be integrated back to zero from each
time.

3.2 The Bistable Equation in One Dimension

We now consider the bistable problem with Neumann boundary conditions in one dimension:8><
>:

ut � �2uxx = u� u3; 0 < x < 1; 0 < t;
ux(0; t) = ux(1; t) = 0; 0 < t;
u(x; 0) = u0(x); 0 < x < 1:

(24)

The bistable equation is one of the simplest problems that produce nonlinear relaxation to
equilibrium in the presence of competing stable steady states. The stable steady states are
u � 1 and u � �1, which are minimizers of the energy functional

Z 1

0

�
�2

2
u2x +

1

4
(u2 � 1)2

�
dx:

19

(x0,y0,z0) = (1,0,0)
(a)

t

0 5 10 15 20 25 30

S 1
(t

)

102

104

106

108

1010

10-4 10-5 10-6 10-7 10-8 10-9

residual tolerance:

(x0,y0,z0) = (0,1,0)
(b)

t

0 5 10 15 20

S 1
(t

)

100

101

102

103

104

105

106

107

Y
.

(1,1,1)T random

initial direction:

Figure 4: The stability factor for di�erent trajectories and initial data

For generic initial data, limt!1 u(x; t) is one of these steady states. But, this convergence
can be extremely slow because solutions of (24) can exhibit dynamic metastability. In
general, u forms a pattern of transition layers between the values 1 and �1, where the layer
thickness is of order �. The subsequent time scale for substantial motion of the layers is
exp(Cd=�), where C = O(1) and d is the minimum distance between layers or between the
layers and the boundaries. Metastable solutions are not local minimizers of the energy, and
thus are always dynamic. After a metastable period, one or more of the layers disappear in
a relatively quick transient and the system forms a new metastable pattern. This repeats
until the eventual convergence to a steady state.

The main issue we address is whether accurate numerical computation is possible over
the entire range of motion of a typical metastable solution. The standard a priori analysis,
with an exponentially growing stability factor on the order of exp(Ct=�2) (� exp(1000t)
for the � we use) rules this out quite de�nitely. It is possible to show[10] that accurate
approximation is possible over the �rst metastable period, i.e. up to some time before the
�rst transition when the wells have not collapsed too much, provided a certain \threshold"
accuracy in space and time is maintained. This analysis does not indicate what happens
during a transient, however. The computational a posteriori error bounds suggest that
meaningful computation is possible for long times, including both transients and metastable
periods. We discretize (24) in space using a second-order �nite element method based on
piecewise linear functions and lumped mass quadrature, resulting in the equation for the
unknown U of dimension M :

Ut � �2AU = F (U); t > 0;
U(0) = given,

(25)

20

with

A =

0
BBBBBBBB@

1 �1 0 � � � 0

�1 2 �1 0
...

0
. . . 0

... 0 �1 2 �1
0 � � � 0 �1 1

1
CCCCCCCCA
M2 and F (U) = (Ui � U3

i)i:

3.3 Parallel Speedup

We begin by addressing the practical computational issues, because this system is of large
dimension and requires a lot of computational power and memory. The results for the
bistable equation have been computed using workstations and also with an Intel Paragon
parallel computer with up to 256 processors.

We assign each processor a consecutive subset of theM gridpoints, so that if there are P
processors, each subset contains about M=P gridpoints. Since the bulk of the computation
is with vectors of this size, the computational time is proportional toM=P . We let � denote
the constant of proportionality representing the time taken per gridpoint.

The di�erential equation itself involves the one-dimensional discrete Laplacian (multi-
plication by the matrix A); to compute this, each gridpoint uses values from its neighbors
so the resulting Jacobian is tridiagonal. To evaluate the discrete Laplacian in parallel, each
processor (except those at the ends of the interval) communicates with its neighbor on ei-
ther side. For this one-dimensional case, the extra time � taken by this communication is
independent of the number of processors or the number of gridpoints. In the case of a single
processor, however, this communication term is absent.

An additional overhead comes from computing scalar products. Each processor com-
putes the part of the scalar product from the gridpoints that it controls. Finally, a sum
over all processors is computed, which takes a time that is logarithmic in the number of
processors. We write this time as
 log2 P .

Thus, we expect the time taken by the inner loop of the one-dimensional computation
to be:

T (M;P) = �M=P + � +
 log2 P: (26)

The parallel machine will be signi�cantly faster than a uniprocessor so long as the overhead
caused by the communication is a small fraction of the computational time itself. In other
words, the code is e�cient if:

M=P >>
�

�
+

�
log2 P: (27)

We now show the times taken for 60 iterations of the QMR solver on (25) versus the size
of the system. There are nine curves in the �gure, corresponding to di�erent numbers of
(Intel Paragon) processors being used. The qualitative content of this �gure is that there is
no point in using a massively parallel machine without a su�ciently large problem to solve.
Only when there are a hundred or more gridpoints per processor is the calculation e�cient.

The experimental results are in agreement with the model above if the parameters satisfy
�=� = 50, and
=� = 25. This means that the code is e�cient so long as the number of
gridpoints per processor is signi�cantly greater than 50 + 25 log2 P .

21

Number of Grid Points

256 512 1024 2048 4096 8192 16384 32768

T
im

e

0.1

1

10

100

1

2

4

8

16

32

64

128

256

Number of
Processors:

Figure 5: Times for a single time step on the Intel Paragon parallel computer

3.4 Computability of the Bistable Problem

We now discuss the a posteriori error analysis of numerical solutions to the one-dimensional
bistable problem.

To study the di�erent stability properties of the solution during metastable and transient
times, we take initial data consisting of two \wells" of di�erent thicknesses and of suitable
shape so that the initial data is nearly metastable at the start. Namely, we take � = 0:03,
and the initial condition

u0(x) =

8>>><
>>>:

tanh((:2 � x)=(2�)); 0 � x < :28;
tanh((x� :36)=(2�)); :28 � x < :4865;
tanh((:613 � x)=(2�)); :4865 � x < :7065;
tanh((x� :8)=(2�)); :7065 � x � 1:

In Figure 6a, we plot the evolution of the approximation from this initial condition. The left
well is slightly thinner than the right and collapses by the sides coming together around time
41, while the well on the right collapses at time 141. The solution exhibits metastability
during the time before 41 and between the two times. In Figure 6b, we plot the stability
factor S1(t) re
ecting the sensitivity of the solution to numerical approximation. In this
case, S1(t) is of order one except during the transient periods, where it rises to 100 or so.
This means that the solution can be accurately approximated with residual tolerances on
the order of 10�3 or less.

The stability factor in Figure 6 shows two sharp peaks, one at each transient. The
stability factor is quite small between the transients when the solution is almost stable with
respect to numerical error. There is a sharp increase leading up to the transients; this growth
is even faster than exponential. After the transient, the stability factor drops precipitously,

22

(a)

 = .03, M = 201, error <- .0001

t
0

56
112

167

x

0

.5

1.0

U
(x

,t)

-1

-0.5

0

0.5

1

(b)

 = .03, M=351, error <- .0001

t
0 56 111 167 222

S 1
(t

)

10-1

100

101

102

Figure 6: Evolution of a bistable solution and its stability factor

indicating that the subsequent solution is essentially independent of any previous error
accumulation. When the solution �nally converges to the uniform equilibrium state, the
stability factor is one, and all previous error due to accumulation is removed.

In Figure 7, we show the e�ects of changing the residual tolerance. When the residual
tolerance is 10�1 and 10�2, (which give \accuracies" on the order of 500% and 50%, respec-
tively), the second transient occurs at a later time. This is visible in the stability factor and
the decrease in time steps during the second transient. We also note that decreasing the
residual tolerance appears to cause a smooth decrease in the time steps used, an important
property if systematic numerical experimentation is to be performed.

(b)

 = .03, M = 201

t
0 50 100 150 200

T
im

es
te

ps

.00111

.0111

.111

1.11

11.1
Tolerance:

10-1

10-2

7.5.10-3

5.0.10-3

2.5.10-3

10-3

10-4

10-5

10-6

Residual

(a)

 = .03, M = 201

t
0 50 100 150 200

S 1
(t

)

10-1

100

101

102
Tolerance:

10-1

10-2

7.5.10-3

5.0.10-3

2.5.10-3

10-3

10-4

10-5

10-6

Residual

Figure 7: E�ect of changing the residual tolerance in the bistable problem with M = 201

Next, we show the e�ect of choosing di�erent initial directions for the dual computations
in Figure 8. Ideally, we would use the direction of the (unknown) error at time tn to compute
the stability factor for that time. The stability factor measures the accumulation of error

23

(a)
 = .03, error <- .0001

t
0 50 100 150 200

S 1
(t

)

10-1

100

101

102

0 1 2 3

Number of Transitions:

(b)
 = .03, error <- .0001

t
0 50 100 150 200

S 1
(t

)

10-1

100

101

102

equal components Ux Uxx

Direction of Initial Data:

Figure 8: E�ect of changing initial data in the dual problem for the bistable problem with
M = 201

associated to that particular direction.
Conjecture 2 of Section 2.4.4 is that in many problems, the magnitude of the stability

factor is relatively insensitive to the choice of initial data. Consider the case when the
Jacobian of the system is a constant matrix. For generic initial data, the solution of the
backward problem will rotate and point in the direction associated to the most unstable (or
least stable) eigenvalue of the Jacobian. This in turn implies that most data will produce
the same size stability factors, provided su�cient time has passed (the time scale depends
on the distribution of eigenvalues). Only initial data that have no component in the most
unstable mode will act di�erently. In the general non-autonomous case, the eigenvalues of
the Jacobian matrix do not determine the stability factors, but rather it is the Lyapunov
characteristic numbers. These are de�ned as limits over in�nite time of average logarithmic
growth rates of perturbations of solutions. We believe that an analogous analysis can
be performed; however, the meaning of \su�ciently long time intervals" is not as clear.
Certainly, variations in the stability factors result from varying the initial data, and the
issue is whether this a�ects the overall error control.

The stability factor corresponding to the direction of the error at the current time can be
bounded by the maximum of the stability factors computed for all directions at that time.
For low-dimensional systems, it is feasible to compute this bound explicitly, however for
large systems it is not. In the latter case, we can increase reliability by computing stability
factors for several choices of initial data. We choose four arbitrary initial directions for the
backward problem and plot the resulting stability factors in Figure 8a. The �rst uses a unit
vector with all components equal, labelled as \0 transitions". The computation labelled \1
transition" has the �rst half of the components in the direction of 1=

p
M and the second

half in the direction of �1=pM . The data labelled \2 transitions" and \3 transitions"
are constructed similarly: unit vectors with components of equal magnitude but alternating
sign. We see that the stability factors are roughly the same size, though there are variations
in the metastable periods. On the other hand, the peak sizes of all the stability factors are

24

very close. Since this coincides with the period of largest residual error, all four factors
yield nearly the same residual tolerances used to achieve the same global error.

The correct initial data for the backward problem is the unknown true error, but it may
be possible in some problems to determine a reasonable substitute for this. In the case of
the bistable equation, it seems natural to conjecture that the error will be largest in the
transition layers. In Figure 8b, we plot stability factors for three choices of initial data. The
�rst is the stability factor corresponding to 0 transitions above. The second is a vector Ux

whose ith component is the average of jUxj in the elements on either side of the ith node

normalized to be a unit vector. The third choice is a vector Uxx whose ith component is
the discrete Laplacian matrix applied to U and normalized to be a unit vector. We see that
as above, there is variation in the stability factors during the metastable regime, however
the peak heights are nearly equal.

As the dimension M is decreased, the ODE system ceases to adequately represent the
continuum behavior of the PDE, and solutions of the ODE system have qualitatively dif-
ferent time behavior than solutions of the PDE system. In particular, the ODE system
undergoes \locking", which means that solutions that have the appearance of metastable
solutions actually become stable. To illustrate the e�ects of this on the error control, we
present results for a variety of M . In Figure 9a, we show S1(t) for various computations.
In all cases, the smaller well collapses. However, when M = 21 the collapse occurs much
sooner than for the other values of M , which is re
ected in the stability factor. On the
other hand, whenM = 21, the second well becomes �xed for all time and the stability factor
correspondingly remains 1. We note that once M is su�ciently large to prevent locking,
the stability factor is relatively insensitive to M . This suggests that a coarse interpolant
of the true solution could be used in the backward computation, an idea that we plan to
explore in future work. In Figure 9a, we plot the time steps versus time for computations

(a)

 = .03, error <- .0001

t
0 56 111 167 222

S 1
(t

)

10-1

100

101

102

M=21

M=51

M=101

M=151

M=201

M=251

M=301

M=351

(b)

= .03, error <- .0001

t
0 56 111 167

T
im

es
te

ps

.00111

.0111

.111

1.11

11.1

111.0

M=21

M=51

M=351

Figure 9: E�ect of changing the (space) dimension in the bistable problem

with M = 21, M = 51, and M = 351. Since the solution locks when M = 21, we see that
the time steps increase steadily as time passes, while for larger M , two sharp dips occur
during the transients, with the time steps decreasing by a couple of orders of magnitude.

25

3.5 The Bistable Equation in Two Dimensions

In two dimensions, the problem reads8><
>:

ut � �2�u = u� u3; (x; y) 2
; 0 < t;
periodic boundary conditions; 0 < t;
u(x; y; 0) = u0(x; y); (x; y) 2
;

(28)

where
 = [0; 1]�[0; 1]. As in the one-dimensional bistable equation, solutions starting from
generic initial data evolve to form thin O(�) transition layers separating regions of u � �1.
All solutions converge to one of the two stable equilibria, u � 1 and u � �1. In this case,
the evolution is \motion by mean curvature" [3], [5], meaning that the normal velocity
of a transition layer is of order �=�2, where � indicates the sum of the layer's principal
curvatures. Thus, the time scales in this problem are much shorter than the exponential
time scales (O(e1=�)) of the evolution of metastable solutions in one dimension.

We made a computation starting from the initial condition consisting of two circular
\mesas":

u0(x; y) =

8><
>:

1; k(x; y) � (:25; :25)k � :15;
1; k(x; y) � (:75; :75)k � :30;
�1; otherwise.

9>=
>;

We compute with � = 1=60, M = 64 � 64, and the computation has reported accuracy
� :0001 using 16 processors of an Intel Paragon.

We plot the solution at four di�erent times in Figure 10. At time t = 18, we see the two
mesas with
at tops and steep, thin sides. The smaller one has already begun to leave the
regime of motion by mean curvature because its radius is no longer large compared to �. It
will shortly disappear (at time t = 43). In the second panel at t = 54, the smaller mesa is
gone. At t = 144, the remaining mesa is close to disappearing, which it does at t = 158. At
t = 180, we see the solution has converged to u � 1.

In Figure 11, we plot the three stability factors during the evolution. The left plot is S(t)
re
ecting the e�ect of error in the initial conditions; the middle plot is S1(t) re
ecting the
accumulation of discretization error; and the right plot is S0(t) re
ecting the accumulation
of quadrature error. We see that S(t) is essentially constant when the evolution is motion
by mean curvature, whereas S0(t) and S1(t) show approximately linear growth during the
same periods. During the transients when the mesas collapse, the error growth rate becomes
superlinear, so that the stability factors reach a sharp peak. After both transients have
passed, S(t) tends rapidly to zero since the solution is now insensitive to small perturbations
in the initial conditions. Similarly, S0(t) (quadrature error) also becomes very small; the
solution is no longer evolving, so that integration by quadrature is exact. On the other
hand, S1(t) achieves its minimum of 1, meaning that the error is bounded by the residual
tolerance.

We conclude by using the stability factors to contrast the dynamics of the one-dimensional
and two-dimensional cases. In Figure 12, we plot S1(t) for the one-dimensional computa-
tion with � = :03 and M = 201 using the two well data of Section 3.4 and S1(t) for
the two-dimensional computation just described. We chose � and the initial conditions
so that the time of evolution was roughly the same for each computation. S1(t) in the
one-dimensional case has periods of superexponential growth as compared to the weakly
super-linear growth of the two-dimensional case, and consequently reaches a much higher

26

(a)

t = 18

y
0

0.2
0.4

0.6
0.8

1

x

0
0.2

0.4
0.6

0.8
1

U
(x

,y
)

-1

-0.5

0

0.5

1

(b)

t = 54

y
0

0.2
0.4

0.6
0.8

1

x

0
0.2

0.4
0.6

0.8
1

U
(x

,y
)

-1

-0.5

0

0.5

1

(d)

t = 180

y
0

0.2
0.4

0.6
0.8

1

x

0
0.2

0.4
0.6

0.8
1

U
(x

,y
)

-1

-0.5

0

0.5

1

(c)

t = 144

y
0

0.2
0.4

0.6
0.8

1

x

0
0.2

0.4
0.6

0.8
1

U
(x

,y
)

-1

-0.5

0

0.5

1

Figure 10: Evolution of a solution of the bistable equation in two dimensions

(a)

t
0 50 100 150

S
(t

)

0

0.2

0.4

0.6

0.8

1
(b)

t
0 50 100 150

S
0(

t)

0

18

36

54

72
(c)

t
0 50 100 150

S 1
(t

)

0

1

2

3

4

5

Figure 11: Stability factors for the bistable equation in two dimensions

27

t

0 50 100 150

S
1(

t)

10-1

100

101

102

Dimension: 1 2

Figure 12: Stability factors for the bistable equations in one and two dimensions

value. We conclude that the one-dimensional case is much more sensitive to perturbations
than the two-dimensional case.

4 Conclusions

In this paper, we described our implementation of a theory of a posteriori error control for
the numerical integration of both large sparse and small dense ODE problems. The software
is robust, modular, and e�cient on machines ranging from a workstation to massively
parallel processors.

We provided evidence that the error estimate is accurate and robust using the three-
dimensional Lorenz system, and also gave evidence that the fundamentally important sta-
bility factors may be accurately approximated using the computed solution rather than the
exact solution.

Next, we investigated the one-dimensional bistable problem and demonstrated that rea-
sonable parallel speedup of the code with up to 32768 points on 256 processors of an mas-
sively parallel processor is possible. We studied a metastable solution that has two slowly
evolving metastable periods punctuated by fast transients before it converges to a steady
state. We not only computed the solution, but quanti�ed the accuracy of the computations
using the a posteriori estimates and by computing the stability factors. We gave further
evidence that the stability factors themselves can be reliably and robustly approximated.

The last experiment we presented showed that we can compute using the code on a larger
system of dimension 4096 while quantifying the accuracy using a posteriori error bounds.
The behavior of this system is qualitatively di�erent from its one-dimensional counterpart,
and we illuminated the di�erences by comparing the stability factors.

28

4.1 Improvements to the ODE Solver

We plan several improvements and extensions of this work in the future.
It is expensive to require storage of the full history of the approximation. We will

investigate ways of reducing the storage requirement using adaptive spline interpolants to
compress the history data.

We shall implement higher-order Galerkin methods and change the adaptive algorithm
to allow the code to choose between di�erent methods and quadrature formulas, depending
on the convergence rate and stability properties of the approximation.

We shall consider di�erent choices of norm in analyzing the error representation and
incorporating the convergence criteria for the nonlinear and linear solvers into the step size
selection mechanism.

4.2 Toward an Accurate Adaptive Parallel PDE Solver

When solving a PDE, it is wise to adapt spatially by re�ning the mesh when new features
require extra resolution, or by coarsening the mesh when complexity has reduced to save
machine resources. Such changes to the discretization of the PDE may be from topological
changes to the mesh (h-re�nement), or from changing the nature of the �nite-element basis
associated with elements of the mesh (p-re�nement).

Such mesh re�nement and coarsening requires a considerable quantity of software sup-
port, especially so when it occurs on a distributed-memory parallel machine [24] [25]. There
is a di�cult optimization problem to solve in the assignment of mesh entities to processors
known as the `load-balance problem' [23]; in the context of the ODE solver as discussed
above, it is a question of which basis vectors (of the phase-space of the solution) are owned
by which processor.

In addition to further work on the ODE solver, we hope to implement such a parallel
space-adaptive PDE solver for reaction-di�usion equations.

Obtaining the Software

The code discussed in this paper and used for the computations is available on the
Internet. The anonymous ftp address is ftp.ccsf.caltech.edu, and the program is in the
�le /roy/cards/cards-1.0.tar.Z. There is a World Wide Web site including the software
and other material at http://www.ccsf.caltech.edu/�roy/cards/.

Acknowledgments

The work of D. Estep is supported by the National Science Foundation, contract num-
bers DMS-9208684 and INT-9302016. The work of R. D. Williams is supported by Caltech,
the Concurrent Supercomputing Consortium, and the Center for Research on Parallel Com-
putation (a National Science Foundation Science and Technology Center, Grant 292-3-51393
under NSF CCR-8809615).

Appendix A

We partition IR+ into 0 = t0 < t1 < � � �, letting km = tm � tm�1 denote the time
step for the interval Im = (tm�1; tm], k = max km, and Pq(Im) the space of polynomials
of degree q and less on Im. The dG method is based on using the space of discontinuous

29

piecewise polynomials for both the space of approximation and the test space. Since these
functions possibly have two values at each node tm, we use the notation U+

m = limt#tm U(t),
U�
m = limt"tm U(t) and [U]m = U+

m � U�
m. For 1 � m, the dG approximation Y 2 Pq(Im)

satis�es

R tm
tm�1

(_Y ; V) dt+ (Y +
m�1; V

+
m�1) =

R tm
tm�1

(f(Y (t); t); V (t)) dt+ (Y �
m�1; V

+
m�1); (29)

for all V 2 Pq(Im);

while Y �
0 = y0. For q = 0, (29) reduces to

Y �
m =

Z
Im

f(Y �
m ; t) dt+ Y �

m�1; (30)

which is recognizable as a variant of the backward Euler scheme. The cG method uses
the space of continuous piecewise polynomials, while the test functions are discontinuous
piecewise polynomials of one less degree, since enforcing continuity takes one degree of
freedom on each interval. For m � 1, the cG approximation Y 2 Pq(Im) satis�esZ tm

tm�1

(_Y ; V) dt =

Z tm

tm�1

(f(Y (t); t); V (t)) dt; for all V 2 Pq�1(Im); (31)

while Y0 = y0. For q = 1, (31) reduces to

Ym =

Z
Im

f(Y (t); t) dt+ Ym�1; (32)

where

Y jIm = Ym�1
t� tm
�km + Ym

t� tm�1
km

: (33)

For the dG method, the best choice of interpolatory quadrature rule uses the Gauss
points in each interval, as this choice satis�es all of our criteria. For example, for q = 0 we
use Z

Im
f(Y �

m ; t) dt! f(Y �
m ; tm�1 + km=2)km; (34)

while for q = 1,

Z
Im

f(Y (t); t) dt! f

Y

tm�1 + km

p
3� 1

2
p
3

!
; tm�1 + km

p
3� 1

2
p
3

!
km
2

(35)

+f

Y

tm�1 + km

p
3 + 1

2
p
3

!
; tm�1 + km

p
3 + 1

2
p
3

!
km
2
:

For the cG q = 1 method, we employ the trapezoidal rule

Z
Im

f(Y (t); t) dt! f(Ym�1; tm�1)
km
2

+ f(Ym; tm)
km
2
: (36)

Suitable quadratures can be derived for all orders.

30

References

[1] Bank, R. and Chan, T., An analysis of the composite step bi-conjugate gradient method,
Numer. Math., 66 (1993), 295-319.

[2] Bertsch, M., Peletier, L. A., and Lunel, S. M. V., The e�ect of temperature-dependent

viscosity on shear-
ow of incompressible
uids, SIAM J. Math. 22 (1991), 328-343.

[3] Bronsard, L. and Kohn, R. V., Motion by mean-curvature as the singular limit of

Ginzburg-Landau dynamics, J. Di�. Eq. 90 (1991), 211-237.

[4] Brown, P. N. and Hindmarsh, A. C., Matrix-free methods for sti� systems of ODE's,
SIAM J. Numer. Anal., 23 (1986), 610-638.

[5] de Mottoni, P. and Schatzmann, M., �Evolution g�eometrique d'interfaces, C. R. Acad.
Sci. Paris Ser. I Math. 309 (1989), 453-458.

[6] Eriksson, K., Estep, D., Hansbo, P., and Johnson, C., Adaptive Finite Element Meth-

ods, North-Holland, Inc, to appear.

[7] Eriksson, K. and Johnson, C., Adaptive �nite-element methods for parabolic problems

1. A linear model problem, SIAM J. Num. Anal., 28 (1991), 43-77.

[8] Eriksson, K. and Johnson, C., Adaptive �nite element methods for parabolic problems

IV: nonlinear problems preprint #1992-44, Chalmers University of Technology, 1992.

[9] Estep, D., A posteriori error bounds and global error control for approximations of

ordinary di�erential equations. SIAM J. Numer. Anal. 32 (1995), 1{48.

[10] Estep, D., An analysis of numerical approximations of metastable solutions of the

bistable equation, Nonlinearity 7 (1994), 1445{1662 .

[11] Estep, D. and French, D., Global error control for the continuous Galerkin �nite element

method for ordinary di�erential equations, RAIRO Mod�el. Math. Anal. Num�er. 28
(1994), 815{852.

[12] Estep, D. and Johnson, C., The computability of the Lorenz system. submitted to J.
Comput. Physics.

[13] Estep, D. and Stuart, A., The dynamical behavior of the Galerkin method for ordinary

di�erential equations and related di�erence schemes. in preparation.

[14] Estep, D. and Johnson, C., An analysis of quadrature in Galerkin �nite element meth-

ods for ordinary di�erential equations, in preparation.

[15] Fox, G. C., Williams, R. D., and Messina, P. C., Parallel Computing Works!, Morgan-
Kaufman, Los Altos, California, 1994.

[16] Freund, R. and Nachtigal, N., QMR: A quasi-minimal residual method for non-

Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.

31

[17] Gear, C. W. and Saad, Y., Iterative solution of linear equations in ODE codes, SIAM
J. Sci. Stat. Comp., 4 (1983), 583-601.

[18] Johan, Z., Hughes, T.J., and Shakib, F., A globally convergent matrix-free algorithm

for implicit time-marching schemes arising in �nite element analysis in
uids. Comput.
Meth. Appl. Mech. Engr. 87 (1991), 281-304.

[19] Meade, D. and Milner, F. A., S-I-R epidemic models with directed di�usion, in Math-

ematical Aspects of Human Diseases, G. Da Prato (ed.), Appl. Math. Monographs 3,
Giardini Editori, Pisa, 1992.

[20] Pearson, J. E., Complex patterns in a simple system, Science 261 (1993), 189-192.

[21] Saad, Y., and Schultz, M., GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp.
856-869.

[22] Wheeler, A. A., Murray, B. T., and Schaefer, R. J., Computation of dendrites using a

phase �eld model, Physica-D, 66 (1993), 243-262.

[23] Williams, R. D., Performance of Dynamic load balancing algorithms for unstructured

mesh calculations, Concurrency, 3 (1991), 457.

[24] Williams, R. D., Voxel databases: A paradigm for parallel computing with meshes,
Concurrency, 4 (1992), p. 619.

[25] Williams, R. D., DIME: Distributed Irregular Mesh Environment, Source code and
documentation available from ftp://ftp.ccsf.caltech.edu/dime/.

32

