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LETTER TO THE EDITOR 

Critical spin dynamics of EuO: comparison of theory and 
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Received 27 January 1986 

Abstract. The standard coupled-mode theory of spin dynamics is evaluated for an isotropic, 
Heisenberg model of EuO at the critical temperature. The predicted long-wavelength limit 
of the spin-relaxation function is approximately a gaussian function of time in the time 
interval probed in recent neutron spin-echo measurements. This functional form is distinctly 
different from the observed, almost exponential, decay. 

Our current understanding of critical spin dynamics of Heisenberg magnets is based 
essentially on two theoretical approaches. Renormalisation group calculations, using 
continuum versions of the Heisenberg magnet, provide firmly based insights into the 
nature of spin-correlation functions in the critical region. In particular, the calculations 
vindicate the dynamic scaling hypothesis and give values for critical exponents; for 
reviews see, for example, BrCzin and Parisi (1978), Hohenberg and Halperin (1977) and 
Kawasaki and Gunton (1976). Another approach, devised before the development of 
the renormalisation group, relies on approximate self-consistent equations derived from 
the spin-operator equation of motion. For largely historic reasons, these self-consistent 
equations are usually called the coupled-mode theory, and different derivations are 
given by Hubbard (1971), Kawasaki (1975) and Wegner (1968). The coupled-mode 
theory is consistent with the dynamic scaling hypothesis, and predicted critical exponents 
agree with results from renormalisation group calculations. 

The coupled-mode theory affords an explicit prediction of the spin-autocorrelation 
function whose temporal Fourier transform is observed in inelastic magnetic neutron 
scattering. Comparisons of theory and experimental results for ferromagnets, both at 
and above the critical temperature, provide strong support in favour of the coupled- 
mode theory. Similar support is provided by computer simulations (Takahashi 1983). 

For all the reasons outlined in the preceding paragraphs, the coupled-mode theory 
of Heisenberg ferromagnets is generally regarded as very reliable. This view is challenged 
by Mezei (1985) on the basis of precise measurements of the spin-correlation function 
of the insulatingferromagnet EuO at the critical temperature. The measured correlation 
function is consistent with a simple exponential time decay, proposed in the conventional 
Van Hove theory of critical slowing down, and thus apparently at odds with results 
deduced from the Wegner (1968) and Hubbard (1971) coupled-mode calculations. We 
report a detailed analysis of the coupled-mode theory for EuO, using an isotropic 
Heisenberg model, which exposes differences between theory and experimental results 
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that are even more pronounced than implied by Mezei's initial analysis. In the time 
interval probed in the experiments, the coupled-mode spin-correlation function is a 
gaussian function of time, to a good approximation, whereas the data are consistent with 
an exponential decay, as mentioned already. 

Let us begin with a brief survey of the coupled-mode theory of spin correlations in 
the Heisenberg magnet described by the Hamiltonian 

x = - I: J(n - m)S, ' S,. 
n.m 

Here, J(m)  is the exchange coupling between spins S located at sites defined by lattice 
vectors m, and J ( 0 )  = 0; values of J for EuO have been obtained by Passel1 et a1 (1976). 
The spectrum of spontaneous spin fluctuations observed in inelastic magnetic neutron 
scattering is 

For an isotropic spin system, the correlation function is independent of the Cartesian 
label LY. The second equality in (2) expresses S ( k ,  U )  in terms of the normalised spin- 
relaxation function F(k,  t )  = F(k,  - t ) ,  and the wave-vector-dependent susceptibility 
~ ( k ) .  The detailed balance factor is written in terms of n ( o )  = [exp(o/T) - 11-l where 
Tis the temperature, using units with h = kB = 1. 

With the coupled-mode theory F(k,  t )  is obtained from the equations 

a,F(k,  t )  = - 1' dt' K ( k ,  t - t ' )F(k ,  t ' )  
0 

and 

(3) 

where 

$(IC) = exp(ik - m > ~ ( m > .  

The parameters ,U and A appear in the susceptibility 

X(k) = W P  - A9W) ( 5 )  

which is derived from the coupled-mode theory by requiring it to satisfy thef-sum rule. 
At the ferromagnetic critical temperature p = Agi(0). We take A = 2 since then (5) is 
exact in the limit T-, m, and the observed critical temperature is consistent with the 
estimate 

obtained from ( 5 )  and the identity S - S = S ( S  + 1). 
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At the critical temperature, and in the limit k- .  0, we find (t 3 0) 

and 

lox dtexp(-iwt)K(k, t )  = 8g(w/B)  

where 
2 "  

g(E) = 3 1  dtexp(-iEt)(Q(t)) ' .  
0 

(9) 

In these expressions the frequency 8 = tk j  ' and {is related to the exchange couplings 
by the k + 0 limit of 

5 2  = uo(8(o) - ~ ( k ) ) ~ , / 2 k 2 ~ 4  k - 0  

in which u o  is the unit-cell volume. For EuO we obtain 

5' = a5(J1  + J2)T,/8rr3 = 1.72meV2 A5 
in which J ,  and J 2  are first- and second-neighbour exchange couplings, and a = 5.14 A 
is the cube edge in the FCC lattice. 

Equations (7) and (9) are sufficient to solve for the functions Q(t)  and g(e). In order 
to solve them numerically, we cut off the integrals at E = E and t = T ,  where E and T 
are large, so (7) can be written 

We compute the integrals by the trapezoidal rule with N strips, so 6~ = E/N and 6t = 
T / N ,  anduse a standard approximation for the sine integralin (10). We start the iteration 
withg(E) = 1 in (lo), obtain Q(t), and get a newg(E) from (9). To check the procedure 
we calculated g(E) to the second iteration analytically, and this was within of the 
numerical result with N = 100, E = 50 and T = 2. After seven iterations with these 
values, convergence was achieved, and Q( t) is illustrated in figure 1 (curve A). Increasing 
N ,  E and Tdoes not affect this curve, and neither does the initial choice forg( E); although 
there is an oscillation of wavelength 2n/E discernible in Q(t) due to the cut-off in g(E), 
which is expected when a discontinuity is introduced in a Fourier transform. The value 
of g(0) is 4.510, and for w e 6 < T, = 5.95 meV the spectrum S(k ,  0) approximates to 
a Lorentz function of w with a half-width = Bg(0). 

To supplement the numerical solution, we can derive an asymptotic solution to the 
coupled equations (7) and (9) as follows. Le ts  = 4 ~ / 3 ' / ~ i &  and y = ( t ~ ~ / B ) * / 2 ,  where 
wo = 8 2 ~ ( 3 ) ' / ~  is the exact value of the frequency that occurs in thef-sum rule 

Suppose we can write 
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T 

Figure 1. Valuesof Q(r)/2;rcomputed by various methods are shown for 0 < r < 1 .O. Curve 
A is the complete numerical solution of equations (7) and (9) obtained with the technique 
described in the text. Curves B are a family of results derived from (13) with an increasing 
number of terms. Curve C i s  obtained from the asymptotic series (16). 

Then from ( 7 )  and (9) 
r 

Q(t) = 2~ 2 b/(4~)‘/(21)! 

g(E) = (00/2”*6) 2 c ~ s * ’ + ~  
/ = 0  

x 

I = O  

where the coefficients bl and cI satisfy 

The first few coefficients bland cl are listed in table 1. In figure 1 (curves B) we show the 
first 12 partial sums of the series (13) for Q( t), and it is clear that the series asymptotically 
approaches the numerical solution. 

Table 1. Coefficients in the expansion of Q ( T )  and g(E), and those for a gaussian g(E). 

1 b, CI ci 

0 1 1 1 
1 -0.5 -1 -1 
2 0.75 3 3 
3 -2.125 -15.5 - 15 
4 9.9375 118.75 105 
5 -70.40625 - 1257.375 - 945 
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For small t, Q(r )  looks gaussian, and if it were, the real part of g(E) would be 
gaussian, and the imaginary part proportional to Dawson's integral. The asymptotic 
series for g(E) would have the coefficients cI replaced by c; (see table l) ,  which are 
Hermite polynomials of argument zero, c ;  = H2,(0)/2'. The two series cI and c ;  are the 
same up to I = 2, with progressively larger deviations, so we can write 

(16) 

The sum to the y5-term is closest to the numerical solution, and is drawn as a chain curve 
in figure 1 (curve C); this serves as a convenient numerical approximation to Q ( t ) .  

Mezei (1985) reports measured values of F(k,  t )  for T = T,, k = 0.024 A-' and 
0 S t S 2 ns that are tolerably well represented by a single exponential with a decay time 
of 0.83 ns. The measured t-dependence of F(k ,  t )  is thus distinctly different from that 
predicted by the coupled-mode theory. Using the value ( l / 6 )  = 5.5 ns, appropriate for 
EuO and k = 0.024 A-', we find F(k,  f = 1 ns) = 0.65 whereas Mezei's result is about 
half this value. 

The discrepancy between theory and experiment is pronounced at short times. The 
exact short-time behaviour of the relaxation function is 

F ( k ,  t )  = 1 - ( t ~ , ) ~ / 2  + . . . 

Q ( t )  = 2nexp(-y)[l - (y3/45) - (y4/1260) - (23ys/18900)]. 

which is in stark contrast with the observed, essentially exponential, decay. For large 
times, such that 6t 9 1, theory predicts an exponential tail to the relaxation function of 
the form exp( - 6g(O)t). In seeking reasons for the discrepancy, other than inadequacy 
of the coupled-mode theory or erroneous data interpretation, we are led to question the 
possible importance of additional terms in the Hamiltonian. However, the most likely 
candidate, a dipolar interaction, has been shown by Mezei (1984) to be unimportant at 
k = 0.024 A-' and T = T,. 

F Mezei kindly made his results available prior to publication, and commented on our 
findings. We have benefited from conversations with U Balucani and G Shirane in the 
course of our work. 
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