
A Virtual Data Grid for LIGO

Ewa Deelman, Carl Kesselman
Information Sciences Institute, University of Southern California

Roy Williams
Center for Advanced Computing Research, California Institute of Technology

Albert Lazzarini, Thomas A. Prince
LIGO experiment, California Institute of Technology

Joe Romano
Physics, University of Texas, Brownsville

Bruce Allen
Physics, University of Wisconsin

Abstract. GriPhyN (Grid Physics Network) is a large US collaboration to
build grid services for large physics experiments, one of which is LIGO, a
gravitational-wave observatory. This paper explains the physics and comput-
ing challenges of LIGO, and the tools that GriPhyN will build to address
them. A key component needed to implement the data pipeline is a virtual
data service; a system to dynamically create data products requested during
the various stages. The data could possibly be already processed in a certain
way, it may be in a file on a storage system, it may be cached, or it may need
to be created through computation. The full elaboration of this system will al-
low complex data pipelines to be set up as virtual data objects, with existing
data being transformed in diverse ways.

This document is a data-computing view of a large physics observatory (LIGO), with
plans for implementing a concept (Virtual Data) by the GriPhyN collaboration in its
support. There are three sections:

• Physics: what data is collected and what kind of analysis is performed on the data.
• The Virtual Data Grid, which describes and elaborates the concept and how it is

used in support of LIGO.
• The GriPhyN Layer, which describes how the virtual data will be stored and han-

dled with the use of the Globus Replica Catalog and the Metadata Catalog.

1 Physics

LIGO (Laser Interferometer Gravitational-Wave Observatory) [1] is a joint Caltech/
MIT project to directly detect the gravitational waves predicted by Einstein's theory of
relativity: oscillations in the fabric of space-time. Currently, there are two observatories
in the United States, (Washington state and Louisiana), one of which recently went
through the “first lock” phase, in which initial calibration data was collected. Theoreti-
cally, gravitational waves are generated by accelerating masses, however they are so
weak that so far they have not been directly detected (although their indirect influence

has been inferred [2]). Because of the extreme weakness of the signals, large data-com-
puting resources are needed to extract them from noise and differentiate astrophysical
gravitational waves from locally-generated interference.
Some phenomena expected to produce gravitational waves are:

• Coalescence of pairs of compact objects such as black-holes and neutron stars. As
they orbit, they lose energy and spiral inwards, with a characteristic “chirp” over
several minutes. Estimates predict of order one observation per year for the cur-
rent generation of detectors.

• Continuous-wave signals over many years, from compact objects rotating asym-
metrically. Their weakness implies that deep computation will be necessary.

• Supernova explosions — the search may be triggered by observation from tradi-
tional astronomical observatories.

• “Starquakes” in neutron stars.
• Primordial signals from the very birth of the Universe.

LIGO’s instruments are laser interferometers, operating in a 4km high-vacuum cavity,
and can measure very small changes in length of the cavity. Because of the high sensi-
tivity, phenomena such as seismic and acoustic noise, magnetic fields, or laser fluctua-
tions can swamp the astrophysical signal, and must themselves be instrumented. Com-
puting is crucial to digitally remove the spurious signals and search for significant pat-
terns in the resulting multi-channel time-series.
The raw data is a collection of time series sampled at various frequencies (e.g., 16kHz,
16Hz, 1Hz, etc.) with the amount of data expected to be generated and catalogued each
year is in the order of tens of terabytes. The data collected represents a gravitational
channel (less than 1% of all data collected) and other instrumental channels produced
by seismographs, acoustic detectors etc. Analysis on the data is performed in both time
and frequency domains. Requirements are to be able to perform single channel analysis
over a long period of time as well as multi-channel analysis over a short time period.

1.1 Data in LIGO
Each scalar time series is represented by a sequence of 2-byte integers, though some are
4-byte integers. Time is represented by GPS time, the number of seconds since an epoch
in 1981, and it is therefore a 9-digit number, possibly followed by 9 more digits for na-
nosecond accuracy (it will become 10 digits in Sept. 2011). Data is stored in Frame
files, a standard format accepted throughout the gravitational wave community. Such a
file can hold a set of time-series with different frequencies, together with metadata
about channel names, time intervals, frequencies, file provenance, etc. In LIGO, the
Frames containing the raw data encompass an interval of time of one second and result
in about 3Mb of data.
In addition to the raw time series, there are many derived data products. Channels can
be combined, filtered and processed in many ways, not just in the time domain, but also
in the Fourier basis, or others, such as wavelets. Knowledge is finally extracted from
the data through pattern matching algorithms; these create collections of candidate
events, for example, inspiral events or candidate pulsars.

1.2 LIGO Data Objects
The Ligo Data Analysis System (LDAS) [3] is a set of component services for process-
ing and archiving LIGO data. Services deliver, clean, filter, and store data. There is
high-performance parallel computing for real-time inspiral search, storage in a distrib-
uted hierarchical way, a relational database, as well as a user interface based on the Tcl
language.
The LIGO data model splits data from metadata explicitly. Bulk data is stored in Frame
files, as explained above, and metadata is stored in a relational database, IBM DB2.
There is also an XML format called LIGO-LW (an extension of XSIL [4]) for repre-
senting annotated, structured scientific data, that is used for communication between
the distributed services of LDAS.
In general, a file may contain more than one Frame, so we define the word FrameFile,
for a file that may contain many frames. Raw data files contain only one frame, and they
are named by the interferometer that produced the data (H: Hanford, L: Livingston),
then the 9-digit GPS time corresponding to the beginning of the data. There is a one or
two letter indication of what kind of data is in the file, (F: full, R: reduced, T: trend, etc.).
So an example of a raw data frame might be H-276354635.F.
For long-term archiving, rather larger files are wanted than the 3-megabyte, one second
raw frames, so there are collection-based files, generally as multi-frame FrameFiles. In
either case, an additional attribute is in the file name saying how many frames there are,
for example H-276354635.F.n200 would be expected to contain 200 frames.
One table of the metadatabase contains FrameSets, which is an abstraction of the
FrameFile concept, recognizing that a FrameFile may be stored in many places: perhaps
on tape at the observatory, on disk in several places, in deep archive.
Each frame file records the names of all of the approximately one thousand channels
that constitute that frame. In general, however, the name set does not change for thou-
sands or tens of thousands of one-second frames. Therefore, we keep a ChannelSet ob-
ject, which is a list of channel names together with an ID number. Thus the catalog of
frames need only store the ChannelSet ID rather than the whole set of names.
The metadatabase also keeps collections of Events. An event may be a candidate for an
astrophysical event such as a black-hole merger or pulsar, or it may refer to a condition
of the LIGO instrument, the breaking of a feedback loop or the RF signal from a nearby
lightning strike. The generic Event really has only two variables: type and significance
(also called Signal to Noise Ratio, or SNR). Very significant events are examined close-
ly, and insignificant events used for generating histograms and other statistical reports.

1.3 Computational aspects, Pulsar Search
LDAS is designed primarily to analyze the data stream in real time to find inspiral
events, and secondarily to make a long-term archive of a suitable subset of the full
LIGO data stream. A primary focus of the GriPhyN effort is to use this archive for a
full-scale search for continuous-wave sources. This search can use unlimited computing
resources, since it can be done at essentially arbitrary depth and detail. A major objec-
tive and testbed of the GriPhyN involvement is to do this search with backfill computa-

tion (the “SETI@home” paradigm), with high-performance computers in the physics
community.
If a massive, rotating ellipsoid does not have coincident rotational and inertial axes (a
time-dependent quadrupole moment), then it emits gravitational radiation. However,
the radiation is very weak unless the object is extremely dense, rotating quickly, and has
a large quadrupole moment. While the estimates of such parameters in astrophysically-
significant situations are vague, it is expected that such sources will be very faint. The
search is computationally intensive primarily because it must search a large parameter
space. The principle dimensions of the search space are position in the sky, frequency,
and rate of change of frequency.
The search is implemented as a pipeline of data transformations. First steps are cleaning
and reshaping of the data, followed by a careful removal of instrumental artifacts to
make a best estimate of the actual deformation of space-time geometry at the LIGO site.
From this, increasingly specialized data products are made, and new ways to calibrate
and filter the raw and refined data.
The pulsar search problem in particular can be thought of as finding features in a large,
very noisy image. The image is in time-frequency space, and the features are curves of
almost-constant frequency — the base frequency of the pulsar modulated by the doppler
shifts caused by the motion of the Earth and the pulsar itself.
The pulsar search can be parallelized by splitting the possible frequencies into bins, and
each processor searching a given bin. The search involves selecting sky position and
frequency slowing, and searching for statistically-significant signals. Once a pulsar
source has been detected, the result is catalogued as an event data structure, which de-
scribes the pulsar's position in the sky, the signal-to-noise ratio, time etc.

1.4 Event Identification Computation Pipeline
During the search for astrophysical events a long duration, one dimensional time series
is processed by a variety of filters. These filters then produce a new time series which
may represent the signal to noise ratio in the data. A threshold is applied to each of the
new time series in order to extract possible events, which are catalogued in the LIGO
database. In order to determine if the event is significant, the raw data containing instru-
mentation channels needs to be re-examined. It is possible that the occurrence of the
event was triggered by some phenomena such as lightning strikes, acoustic noise, seis-
mic activity, etc. These are recorded by various instruments present in the LIGO system
and can be found in the raw data channels. To eliminate their influence, the instrumental
and environmental monitor channels must be examined and compared to the occurrence
of the event. The location of the raw data channels can be found in the LIGO database.
Since the event is pinpointed in time, only small portions of the many channels (that
possibly needs to be processed) need to be examined. This computational pipeline
clearly demonstrates the need for efficient indexing and processing of data in various
views:

• a long time interval single channel data, such as the initial data being filtered, and
• the many channel, short time interval such as the instrument data needed to add

confidence to the observation of events.

2 GriPhyN/LIGO Virtual Data Grid

GriPhyN [5] (Grid Physics Network) is a collaboration funded by the US National Sci-
ence Foundation to build tools that can handle the very large (petabyte) scale data re-
quirements of cutting-edge physics experiments. In addition to the LIGO observatory,
GriPhyN works with the CMS and Atlas experiments at CERN’s Large Hadron Collider
[6] and the Sloan Digital Sky Survey [7].
A key component needed to implement the data pipeline is a virtual data service; a sys-
tem to dynamically create data products requested during the various stages. The data
could possibly be already processed in a certain way, it may be in a file on a storage
system, it may be cached, or it may need to be created through computation. The full
elaboration of this system will allow complex data pipelines to be set up as virtual data
objects, with existing data being transformed in diverse ways.

2.1 Virtual Data
An example of Virtual Data is this: “The first 1000 digits of Pi”. It defines a data object
without computing it. If this request comes in, we might already have the result in deep
archive: should we get it from there, or just rerun the computation? Another example is:
“Pi to 1000 places”. How can we decide if these are the same request even though the
words are different? If someone asks for “Pi to 30 digits”, but we already have the first
two, how can we decide that the latter can be derived easily from the former? These
questions lie at the heart of the GriPhyN Virtual Data concept.
In the extreme, there is only raw data. Other requests for data, such as obtaining a single
channel of data ranging over a large time interval, can be derived from the original data
set. At the other extreme, every single data product that has been created (even if it rep-
resents an intermediate step not referred to again) can be archived. Clearly, neither ex-
treme is an efficient solution; however with the use of the Virtual Data Grid (VDG)
technology, one can bridge the two extremes. The raw data is of course kept and some
of the derived data products are archived as well. Additionally, data can be distributed
among various storage systems, providing opportunities for intelligent data retrieval
and replication.
VDG will provide transparent access to virtual data products. To efficiently satisfy re-
quests for data, the VDG needs to make decisions about the instantiation of the various
objects. The following are some examples of VDG support for LIGO data:

• Raw data vs. cleaned data channels. Most likely, only the virtual data representing
the most interesting clean channels should be instantiated.

• Data composed from smaller pieces of data, such as long duration frames that
could have been already processed from many short duration frames.

• Time-frequency image, such as the one constructed during the pulsar search.
Most likely the entire frequency-time image will not be archived. However, all its
components (short power spectra) might be instantiated. The VDG can then com-
pose the desired frequency-time images on demand.

• Interesting events. Given a strong signal representing a particularly promising
event, the engineering data related to the time period of the occurrence of the

event will most likely be accessed and filtered often. In this case, the VDG might
instantiate preprocessed instrumental and environmental data channels, data that
might otherwise exist only in its raw form.

2.2 Simple Virtual Data Request Scenario
A VDG is defined by its Virtual Data Domain, meaning the (possibly infinite) set of all
possible data objects that can be produced, together with a naming scheme (“coordinate
system”) for the Domain. There are functions on the domain that map a name in the do-
main to a data object. The VDG software is responsible for caching and replicating in-
stantiated data objects. In our development of the LIGO VDG, we begin with a simple
Cartesian product domain, and then add complexity.
Let D be the Cartesian product of a time interval with a set of channels, and we think of
the LIGO data as a map from D to the value of the channel at a given time. In reality,
of course, it is complicated by missing data, multiple interferometers, data recorded in
different formats, and so on.
In the following, we consider requests for the data from a subdomain of the full domain.
Each request is for the data from a subset of the channels for a subinterval of the full
time interval. Thus, a request might be written in as:

T0=700004893, T1=700007847; IFO_DCDM_1, IFO_Seis_*

where IFO_DCDM_1 is a channel, and IFO_Seis_* is a regular expression on channel
names. Our first task is to create a naming scheme for the virtual data object, each name
being a combination of the name of a time interval and the name of a set of channels.
This could be satisfied if there is a suitable superset file in the replica database, for ex-
ample this one:

T0=70004000,T1=700008000;IFO_*

We need to be able to decide if a given Virtual Data Object (VDO) contains another, or
what set of VDO's can be used to create the requested VDO. If Ci is a subset of the chan-
nels, and Ii is a subinterval, then tools could be used to combine multiple files (C1,I1),
(C2,I2), ... perhaps as:

• The new file could be (C, I), where C = union Ci and I = intersect Ii, a channel union
tool, or

• The new file could be (C, I), where C = intersect Ci and I = union Ii, an interval
union tool.

We could thus respond to requests by composing existing files from the distributed stor-
age to form the requested file.
To be effective, we need to develop a knowledge base of the various transformations
(i.e., how they are performed, which results are temporary, and which need to be per-
sistent). We need to know the nature of the context in which these transformations oc-
cur: something simple is the Fourier transform, but more difficult would a transforma-
tion that uses a certain code, compiled in a certain way, running on a specific machine.
This description of context is needed in order to be able to execute the transformations
on data sets as well as to determine how to describe them.

2.3 Generalized Virtual Data Description
The goal of the GriPhyN Virtual Data Grid system is to make it easy for an application
or user to access data. As explained above, as a starting point we will service requests
consisting of a range of time t0 to t1 (specified in GPS seconds), followed by a list of
channels. However, we now extend the idea of channel to “virtual channel”.
Virtual Channels
A virtual channel is a time series, like a real channel, but it may be derived from actual
channels, and not correspond to a channel in the raw data. Some examples of virtual
channels are:

• An actual recorded channel, “raw”.
• An actual recorded channel, but downsampled or resampled to a different sam-

pling rate.
• An arithmetic combination of channels, for example 2C1 + 3C2, where C1 and C2

are existing channels.
• The actual channel, convolved with a particular calibration response function,

and scaled. For example, the X component of the acceleration.
• The virtual channel might be computed from the actual data channels in different

ways depending upon what time interval is requested (e.g., the calibrations
changed, the channels were hooked up differently, etc.).

• A virtual channel could be defined in terms of transformations applied to other
virtual channels.

In short, the virtual channels are a set of transformations applied to the raw data.
The set of virtual channels would be extendable by the user. As the project progresses,
one may want to extend the set of virtual channels to include additional, useful trans-
formations. Thus, if a user is willing to define a virtual channel by specifying all the
necessary transformations, it will be entered in the catalog and will be available to all
users, programs, and services. New channels can be created from the raw data channels
by parameterized filters, for example decimation, heterodyning, whitening, principle
components, autocorrelation, and so forth.
Data naming
A crucial step in the creation of the GriPhyN Virtual Data model is the naming scheme
for virtual data objects. Semantically, we might think of names as a set of keyword-val-
ue pairs, extended by transformations, perhaps something like
(T0=123,T1=456,Chan=[A,B*,C?]).pca().decimate(500). The first part in parenthe-
ses is the keyword-value set, the rest is a sequence of (perhaps parameterized) filters.
We could also think of using names that contain an SQL query, or even names that in-
clude an entire program to be executed. The syntax could also be expressed in other
ways, as XML, or with metacharacters escaped to build a posix-like file name. We
could use a syntax like protocol://virtual-data-name to express these different
syntax in one extensible syntax. However, decisions on naming Virtual Data must be
premised on existing schemes described in Section 1.2.

3 GriPhyN Support

The goal of GriPhyN is to satisfy user data requests transparently. When a request for a
set of virtual channels spanning a given time interval is made, the application (user pro-
gram) does not need to have any knowledge about the actual data location, or even if
the data has been pre-computed. GriPhyN will deliver the requested virtual channels by
either retrieving existing data from long term storage, data caches containing previously
requested virtual channels, or by calculating the desired channels from the available
data (if possible).
When satisfying requests from users, data may be in slow or fast storage, on tape, at
great distance, or on nearby spinning disk. The data may be in small pieces (~1 second)
or in long contiguous intervals (~1 day), and conversion from one to another requires
computational and network resources. A given request for the data from a given time
interval can thus be constructed by joining many local, small files, by fetching a distant
file that contains the entire interval, or by a combination of these techniques. The heart
of this project is the understanding and solution of this optimization problem, and an
implementation of a real data server using GriPhyN tools.

3.1 User Requests
The initial implementation of the GriPhyN system will accept requests in the semantic
form:

t0,t1; A,B,C...,
where t0, t1 is a time interval, and A,B,C,... are virtual channels. We assume that
the order in which the channels are listed does not affect the outcome of the request. The
syntax of the virtual channel is yet to be determined. In the simplest form, a virtual
channel resulting from a transformation Trx on a channel Cy would be Trx(Cy); addi-
tional attributes (such as transformation parameters or other input channels) can be
specified as additional parameters in the list: Trx(Cy, Cz; ? , ? ,), depending on the trans-
formation. The transformation specific information will be stored in the Transformation
Catalog described below.
The semantic content of the request is defined above, but not the syntax. The actual for-
mulation for the GriPhyN-LIGO VDG will be an XML document, though the precise
schema is not yet known. We are intending to implement requests as a very small doc-
ument (for efficiency), but with links to context, so that a machine can create the correct
environment for executing the request. We expect much of the schema development to
be implemented with nested XML namespaces [8].

3.2 Data access, cost performance estimation
When a user or computer issues a request to the Virtual Data Grid, it is initially received
by a Request Manager service and sent for processing to the Metadata Catalog, which
provides the set of logical files that satisfies the request, if such exists. The files names
are retrieved from the Metadata Catalog based on a set of attributes.
The logical files found in the Metadata Catalog are sent to the Replica Catalog, which
maps them to a unique file, perhaps the closest in some sense of many such replicas.

The information about the actual file existence and location (provided by the Replica
Catalog) are passed to the Request Manager, which makes a determination about how
to deliver the data.
If the requested data is present, the Request Manager still needs to determine whether
it is cheaper to recalculate the data or access it. When considering the cost of referenc-
ing data, the cost of accessing various replicas of the data (if present) needs to be esti-
mated. If the data is not present, the possibility and cost of data calculation needs to be
evaluated. In order to make these decisions, the Request Manager queries the Informa-
tion Catalog. The latter can provide information about the available computational re-
sources, network latencies, bandwidth, etc.
The next major service is the Request Planner. It is in charge of creating a plan for the
execution of the transformations on a given data set and/or creating a plan for the re-
trieval of data from a storage system. The Request Planner has access to the system in-
formation retrieved by the Request Manager. To evaluate the cost of re-computation,
the cost of the transformations needs to be known. This information, as well as the input
and parameters required by a given transformation, code location, etc. are stored in the
Transformation Catalog. The Request Planner uses information about the transforma-
tions that have been requested, to estimate the relative costs of computation vs. caching,
and so on. The system would possibly keep a record of how long the various transfor-
mations took, and could use this performance history to estimate costs. This record and
the analytical performance estimates will be maintained in the Transformation Catalog.
The performance data needed in the evaluation of re-computation and replica access
costs (such as network performance, availability of computational resources, etc.) will
be provided by other information services, which are part of the Globus toolkit [9], a
software environment designed for the Grid infrastructure.
Once the request planner decides on a course of action the Request Executor is put in
charge of carrying out the plan which involves the allocation of resources, data move-
ment, fault monitoring, etc. The Request Executor will use the existing Globus infra-
structure to access the data and the computational Grid, and run large jobs reliably with
systems controlled by systems such as Condor [10]. As a result of the completion of the
request, the various catalogs might need to be updated.

3.3 Proactive Data Replication
Simply, just retrieving data from the replica catalog is not sufficient. The system must
take a proactive approach to creating replica files and decide whether the results of
transformations will be needed again. For example, if there is a request for a single
channel spanning a long time interval and the replica catalog contains only files which
are multi-channel spanning short time periods, then a significant amount of processing
is needed to create the requested file (many files need to be opened and a small amount
of data needs to be retrieved from each of them). However, once this transformation is
performed, the resulting data can be placed in the replica catalog for future use, thus re-
ducing the cost of subsequent requests. New replicas should also be created for fre-
quently accessed data, if accessing the data from the available locations is too costly.
For example, it may be useful to replicate data that initially resides on tape to a local file
system. Since the Request Manager has information about data existence, location and

computation costs, it will also be responsible for making decisions about replica crea-
tion.

4 Conclusions

Although the GriPhyN project is only in its initial phase, its potential to enhance the re-
search of individual physicists and enable their wide-spread collaboration is great. This
paper presents the first step in bridging the understanding between the needs of the
physics community and the research focus of computer science to further the use and
deployment of grid technologies [11] on a wide scale, in the form of a Virtual Data Grid.

 References.
[1] Barish, B. C. and Weiss, R., Physics Today, Oct 1999, pp. 44-50; also http://www.li-

go.caltech.edu/
[2] Taylor, G., and Weisberg, J. M., Astrophys. J. 345, 434 (1989).
[3] Anderson, S., Blackburn, K., Lazzarini, A., Majid, W., Prince, T., Williams, R., The LIGO

Data Analysis System, Proc. of the XXXIVth Recontres de Moriond, January 23-30, 1999,
Les Arcs, France, also http://www.ligo.caltech.edu/docs/P/P990020-00.pdf

[4] Blackburn, K., Lazzarini, A., Prince, T., Williams, R., XSIL: Extensible Scientific Inter-
change Language, Lect. Notes Comput. Sci. 1593 (1999) 513-524.

[5] GriPhyN, Grid Physics Net, http://www.griphyn.org/
[6] CERN Large Hadron Collider, http://lhc.web.cern.ch/lhc/
[7] Sloan Digital Sky Survey, http://www.sdss.org/
[8] For information of XML and schemas, see http://www.xml.com/schemas
[9] Globus: http://www.globus.org
[10] Condor: http://www.cs.wisc.edu/condor/.
[11] Gridforum: http://www.gridforum.org/

