
CONCURRENCY PRACTICE AND EXPERIENCE. VOL. 3(5). 457431 (OCIDBER 1991)

Performance of dynamic load balancing algorithms
for unstructured mesh calculations
ROY D. WILLIAMS
Concurrenf Svpercomp~ing Facility
California ~nrlitvte of Techndogy
Pasadena, California, USA

SUMMARY
If a finite element mesh has a sufficiently regular structure, it is easy to decide In advance
how to distribute the mesh among the processors of a distributed-memory parallel processor,
but if the mesh is unstructured the problem becomes much more difficult. The distribution
should be made so that each processor has approximately equal work to do, and such that
communication overhead is minimized.

If the mesh is solution-adaptive, i.e. the mesh and hence the load-balancing problem change
discretely during execution of the code, then it is most efficient to decide the optimal mesh
distribution in parallel. In this paper three parallel algorithms, orthogonal recursive bisection
(ORB), eigenvector recursive bisection (ERB) and a simple parallelization of simulated
annealing (SA) have been implemented for load balancing a dynamic unstructured triangular
mesh on 16 processors of an NCUBE machine.

The test problem is a solution-adaptive Laplace solver, with an initial mesh of 280 elements,
refined in seven stages to 5772 elements. We present execution times lor the solver resulting
from the mesh distributions using the three algorithms, as well as results on imbalance,
communication traffic and element migration.

The load-balancing itself is fastest with ORB, but a very long run of SA produces a saving
of 21% in the execution time of the Laplace solver. ERB is only a little slower than ORB,
and yet produces a mesh distribution whose execution time is 15% faster than ORB.

1. INTRODUCTION
A distributed memory parallel processor runs most efficiently when:

0 the problem it is to solve has been split into approximately equal sized pieces, one

0 the amount of communication between processors is minimized;
0 the communication occurs in large messages rather than many small messages.

for each processor;

This optimization problem for the mesh distribution is load-balancing.
We may classify load balancing strategies into four broad types depending on when

the optimization is made and whether the cost of the optimization is included in the
optimization itself:

0 By inspection: The load-balancing strategy may be determined by inspection, such
as with a rectangular lattice of grid points split into smaller rectangles, so that the
load balancing problem is solved before the program is written.

0 Static: The optimization is non-trivial, but may be done by a sequential machine

1040-3108191/050457-25$12.50
01991 by John Wiley & Sons, Ltd.

Received 7 Jvnc 1990
Revked S April 1991

458 R. D. WILLIAMS

before starting the parallel program, so that the load-balancing problem is solved
before the parallel program begins.

0 Quasidynamic: The circumstances determining the optimal balance change during
program execution, but discretely and infrequently. Because the change is discrete,
the load balance problem and hence its solution remain the same until the next
change. If these changes are infrequent enough, any savings made in the subsequent
computation make up for the time spent solving the load-balancing problem. The
difference between this and the static case is that the load balancing must be carried
out in parallel to prevent a sequential bottleneck.

0 Dynamic: The circumstances determining the optimal balance change frequently or
continuously during execution, so that the cost of the load balancing calculation
after each change should be minimized in addition to optimizing the splitting of the
actual calculation. This means that there must be a decision made every so often to
decide if load balancing is necessary, and how much time to spend on it.

In this paper we shall consider the quasi-dynamic case, with observations on the time
taken to do the load balancing that bear on the dynamic case. The test bed is an
unstructured-mesh finite element code, where the elements are the atoms of the problem,
which are to be assigned to processors. The mesh is solution-adaptive. meaning that it
becomes finer in places where the solution of the problem dictates refinement.

Since the application is running on a distributed machine, it would seem most efficient
to do the load-balancing in sifu. An alternative would be to send sufficient information to a
sequential machine, which can make the load-balancing decisions, then pass information
back to the distributed machine for implementation. Such a scheme would work well
if the parallel machine had few processors, but here we concentrate on scalable codes,
which can effectively utilize large numbers of processors, where this sequential load-
balancing would be a serious bottleneck. Thus in this paper we are investigating only
parallel methods for making load-balancing decisions.

We shall show that a class of finite-element applications share common load balancing
requirements, and formulate load balancing as a graph coloring problem. We shall discuss
three methods for solving this graph coloring problem: one based on statistical physics,
an eigenvector method, and a cheap and simple method.

We present results from running these three load balancing methods, both in terms of
the quality of the graph coloring solution (machine-independent results), and in terms
of the particular machine (16 processors of an NCUBE) on which the test was run. The
NCUBE timings are given in a time unit (flop) which is the time taken for a processor
to do a 64-bit multiply.

2. THE OPTIMIZATION PROBLEM

We wish to distribute the elements among the processors of the machine to minimize both
load imbalance (one processor having more elements than another) and communication
between elements.

Our approach here is to write down a cost function which is minimized when the
total running time of the code is minimized and is reasonably simple and independent of
the details of the code. We then minimize this cost function and distribute the elements
accordingly.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC LOAD BALANCING ALGORITHMS 459

The load balancing problem [1 4 1 may be stated as a graph-coloring problem: given
an undirected graph of N nodes (finite elements), color these nodes with P colors
(processors) to minimize a cost function H which is related to the time taken to execute
the pmgram for a given coloring. For finite-element applications it is the elements which
are to be distributed among the processors, so the graph to be colored is actually the
dual graph to the mesh, where each graph node corresponds to an element of the mesh
and has (if it is not at a boundary) three neighbors.

We may construct the cost function as the sum of a part that minimizes load imbalance
and a part that minimizes communication:

where Hc* is the part of the cost function which is minimized when each processor
has equal work, Hc0- is minimal when communication time is minimized, and p is a
parameter expressing the balance between the two. For programs with a great deal of
calculation compared to communication, p should be small, and vice versa.

As p is increased, the number of processors in use will decrease until eventually the
communication is so costly that the entire calculation must be done on a single processor.

Let e , f , . . . label the nodes of the graph, and p(e) be the color (or processor assignment)
of graph node e. Then the number of graph nodes of color q is

and H c d is proportional to the maximum value of N,, because the whole calculation
runs at the speed of the slowest processor, and the slowest processor is the one with the
most graph nodes. The formulation as a maximum of Nq is, however, not satisfactory
when a perturbation is added to the cost function, such as that from the communication
cost function. If, for example, we were to add a linear forcing term proportional to NO,
the cost function would be

HZTkd = maxNq + ENO

and Qe minimum of this perturbed cost function is either NO = N1 = ..- = N/P if E
is less than 1/(P - I), or NO = 0, N1 = NZ = N / (P - 1) if E is larger than this. This
discontinuous behavior as a result of perturbations is undesirable, so we use a sum of
squares instead, whose minima change smoothly with the magnitude of a perturbation:

where C is a scaling constant to be determined.
We now consider the communication part of the cost function. Let us define the matrix

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

R. D. WILLIAMS 460

which is the amount of communication between processor q and processor r , and the
notation e H f means that the graph nodes e and f are connected by an edge of the

The cost of communication from processor q to processor r depends on the machine
architecture; for some parallel machines it may be possible to write down this metric
explicitly. For example, with the early hypenxbes the cost is the number of bits which
are different in the binary representations of the processor numbers q and r . The metric
may also depend on the message-passing software, or even on the activities of other
users for a shared machine. A truly portable load balancer would have no option but to
send sample messages around and measure the machine metric, then distribute the graph
appropriately. In this paper, however, we shall avoid the question of the machine metric
by simply assuming that all pairs of processors are equally far apart, except, of course,
a processor may communicate with itself at no cost.

The cost of sending the quantity B , of data also depends on the programming: the cost
will be much less if it is possible for the B, messages to be bundled together and sent
as one, rather than sent separately. The problem is latency: the cost to send a message
in any distributed system is the sum of an initial fixed price and a price proportional to
the size of the message. This is also the case for the pricing of telephone calls, freight
shipping, mail service and many other examples from the everyday world. If the message
is large enough, we may ignore latency: for the NCUBE used in Section 9 of this paper,
latency may be ignored if the message is longer than a hundred bytes or so. In the tests
of Section 9, most of the messages are indeed long enough to neglect latency, though
there is certainly further work needed on load-balancing in the presence of this important
effect.

The result of this discussion is that we shall assume that the cost of communicating
the quantity B,, of data is proportional to B,,, unless q = r, in which case the cost is
zero.

We shall now make the assumption that the total communication cost is the sum of
the individual communications between processors:

graph-

where E is a constant to be determined. Notice that any parallelism in communication
is ignored. Substituting the expression for B,,, the expression for the load balance cost
function simplifies to

The assumptions made to derive this cost function are significant. The most serious
deviation from reality is neglecting the parallelism of communication, so that a minimum
of this cost function may have grossly unbalanced communication loads. This turns out
not to be the case, however, because when the mesh is equally balanced, there is a lower
limit to the amount of boundary, analogous to a bubble having minimal surface area for
fixed volume; if we then minimize the sum of surface areas for a set of bubbles of equal
volumes, each surface must be minimized and equal.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC LOAD BALANCING ALGORITHMS 46 1

We may now choose the scaling constants C and E . A convenient choice is such that
the optimal H,& and Hco- have contributions of size about 1 from each processor;
the form of the scaling constant E is because the surface area of a compact shape in d
dimensions varies as the d - 1 power of the size, while volume varies as the d power.
The final form for H is

where d is the dimensionality of the mesh from which the graph came.

3. MODELING THE COST FUNCTION

We may construct a simple approximation to the load balance cost function in the limit
N >> P >> 1. We shall concentrate on a single processor, and suppose it has a
proportion a of its correct share of elements, so that when a = 1 it has its proper share
N /P of the elements. Let us assume that the other P - 1 processors have equal shares
of the remaining elements. Let us call a thefilling fraction.

In one dimension, the boundary cost associated with the special processor is 2 for
a > 0 and 0 for a = 0. In two dimensions, if we assume that the boundary is minimized
for the given number of elements, then the boundary cost is proportional to all2. For
a perfect hexagonal lattice, the scaled boundary cost is (6a)'I2. We may then write the
cost function in terms of 0:

H = 1 + (1 - a)' + 2p(1 - ba,o)
H = 1 + (1 - a)2 + p(6a)lI2

dimension = 1

dimension = 2

The two-dimensional H is plotted in Figure 1 for various values of 1.1. When p is
sufficiently large, the minimum value of H corresponds to a = 0, so that the processor

H = 2

H = I
a=O a = I a = 2

Figure I . Cost function variation with fillingfraction in two dimemiom, for ~1 = 0 (bottom curve)
to 0.6 (upper curve) in steps of 0.1

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

R. D. WILLIAMS 462

has no elements, which is because communication has become too expensive to profitably
use the processor. For smaller p, there are two local minima, one at a = 0 and one near
a = 1, separated by a barrier. The significance of this barrier is related to physical ideas of
nucleation in supersaturated fluids: very small droplets of fluid are dominated by surface
energy, and tend to get smaller and disappear back into solution, even if large bubbles
are energetically favored, because the small bubble cannot ‘jump the energy barrier’ to
the energetically favored large bubble.

4. ALGORITHMS FOR LOAD BALANCING

This paper presents performance evaluation of three load-balancing algorithms, all of
which run in parallel. With a massively parallel machine, it would not be possible to load
balance the mesh sequentially. This is because: (1) there would be a serious sequential
bottleneck; (2) there would not be enough memory in a host machine to store the entire
distributed mesh; (3) there would be a large cost incurred in communicating the entire
mesh.

The three methods are:

SA (simulated annealing): We directly minimize the above cost function by a process
analogous to slow physical cooling.

0 ORB (orrhogonal recursive bisection): A simple method which cuts the graph into
two by a vertical cut, then cuts each half into two by a horizontal cut, then each
quarter is cut vertically, and so on.

0 ERB (eigenvector recursive bisection): This method also cuts the graph in two then
each half into two, and so on, but the cutting is done using an eigenvector of a
matrix with the same sparsity structure as the adjacency matrix of the graph.

5. SIMULATED ANNEALING

Simulated annealing[5-7] is a very general optimization method which stochastically
simulates the slow cooling of a physical system. The idea is that there is a cost function
H (in physical terms a Hamiltonian) which associates a cost with a state of the system,
a ‘temperature’ T, and various ways to change the state of the system. The algorithm
works by iteratively proposing changes and either accepting or rejecting each change.
Having proposed a change we may evaluate the change SH in H . The proposed change
may be accepted or rejected by the Metropolis criterion; if the cost function decreases
(SH < 0) the change is accepted unconditionally, otherwise it is accepted but only with
probability exp(-SH / T) . A crucial requirement for the proposed changes is reachability:
that there be a sufficient variety of changes such that there is a sequence of changes so
that any system state may be reached from any other.

When the temperature is zero, changes are accepted only if H decreases, an algorithm
also known as the greedy algorithm or hill-climbing. The system soon reaches a state in
which none of the proposed changes can decrease the cost function, but this is usually a
poor optimum. In real life we might be trying to achieve the highest point of a mountain
range by simply walking upwards: we soon arrive at the peak of a small foothill and can
go no further.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC LOAD BALANCING ALGORITHMS 463

On the contrary, if the temperature is very high, all changes are accepted, and we
simply move at random ignoring the cost function. Because of the reachability property
of the set of changes, we explore all states of the system, including the global optimum.

Simulated annealing consists of running the acceptheject algorithm between the
temperature extremes. We propose many changes, starting at a high temperature and
exploring the state space, and gradually decreasing the temperature to zero while
hopefully settling on the global optimum. It can be shown that if the temperature decreases
sufficiently slowly (the reciprocal of the logarithm of the time), then the probability of
being in a global optimum tends to certainty”l1.

Figure 2 shows simulated annealing applied to the load balancing cost function in one
dimension. The graph to be colored is a periodically connected linear array of 200 nodes,
to be colored with four colors. The initial configuration, at the bottom of the figure, is
the left 100 nodes colored white, two domains of 50 each in mid grays, and with no
nodes colored in the darkest gray. We know that the global optimum is 50 nodes of each
color, with all the nodes of the same color consecutive.
’ At each iteration of the annealing, a random node is chosen, and its color changed to a

random color. This proposed move is accepted if the Metropolis criterion is accepted. At
the end of the annealing, at the top of the Figure, a good balance is achieved, with each
color having equal numbers of nodes, but there are 14 places where the color changes
(communication cost = 14), rather than the minimum of four.

zero
temperature

Random

high
temperature

Figure 2. Simulated annealing of a ring graph of size 200, with the four graph colors shown by gray
shades. The time history of the annealing rum vertically, with the maximum temperatwe and the
starting configuration at the bottom; zero temperature and the final optimum at the top. The basic

move is to change the color of a graph node to a random color

5.1. Heuristics

In choosing the change to be made to the state of the system, there may be intuitive or
heuristic reasons to choose a change which tends to reduce the cost function. For our

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

464 R. D. WILLIAMS

example of load-balancing, we know that the optimal coloring of the graph has equal
sized compact ‘globules’; if we were to restrict the new color of a node to be the color
of one of its two neighbors, then the boundaries between colors move without creating
new domains.

The effect of this algorithm is shown in Figure 3, with the same number of iterations
as Figure 2. The imbalance of 100 white nodes is quickly removed, but there are only
three colors of 67 nodes each in the (periodically connected) final configuration. The
problem is that the changes do not satisfy reachability; if a color is not present in graph
coloring, then it can never be present.

zero
temperature

Neighbor

high
temperature

Figure 3. Same rn Figure 2. except that the baric move is to change the color of a graph node to
the color of one of the neighbors

Even if reachability is satisfied, a heuristic may degrade the quality of the final
optimum, because a heuristic is coercing the state toward local minima in much the
same way that a low temperature would. This may reduce the ability of the annealing
algorithm to explore the state space, and cause it to drop into a local minimum and stay
there, resulting in poor performance overall.

In Figure 4 is shown a solution to this problem. With high probability the new color
is one of the neighbors, but also there is a small probability of a ‘seed’ color, which
is a randomly chosen color. Now we see a much better final configuration, close to the
global optimum. The balance is perfect and there are five separate domains instead of
the optimal four.

5.2. Collisional simulated annealing

As presented so far, simulated annealing is a sequential algorithm, since whenever a move
is made an acceptance decision must be made before another move may be evaluated.
A parallel variant, which we shall call collisional simulated annealing, would be to

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

465 DYNAMIC LOAD BALANCING ALGORITHMS

zero
temperature

99% Neighbor
1% Random

high
temperature

Figure 4 . Same as Figure 2 , except the basic move is to change the color of a graph node to the
color of one of the neighbors with large probability, and to a r a h m color with small probability

propose several changes to the state of the system, evaluate the Metropolis criterion
on each simultaneously, then make those changes which are accepted. Figure 5 shows
the results of the same set of changes as Figure 4, but doing 16 simultaneous changes
instead of sequentially. Now there are eight domains in the final configuration rather
than five. The essential difference from the sequential algorithm is that SH resulting
from several simultaneous changes is not the sum of the SH values if the changes are

zero
temperature

Parallel
999bNeighbor

1% seed

high
temperature

Figure 5. Same as Figure 4 , except the optimization is being carried out in parallel by 16processors.
Note the fuzzy edges of the domaim caused by parallel collisiom

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

466 R. D. WILLIAMS

made in sequence. We tend to get parallel collisions, where there may be two changes
each of which individually is beneficial, but the two together are detrimental. For example,
a married couple might need to buy a lawn mower: if either buys it, the result is beneficial
to the couple, but if both simultaneously buy lawn mowers, the result is detrimental
because they only need one.

The problem with this parallel variant is, of course, that we are no longer doing
the correct algorithm, since each processor is making changes without consulting the
others. As noted in References 8-11, we have an algorithm which is highly parallel,
but not particularly efficient. We should note that when the temperature is close to zero,
the success rate of changes (ratio of accepted to proposed changes) falls to zero: since
a parallel collision depends on two successful changes, the parallel collision rate is
proportional to the square of the low success rate, so that the effects of parallel collisions
must be negligible at low temperatures.

One approach[3,12] to the parallel collision problem is rollback. We make the changes
in parallel, as above, then check to see if any parallel collisions have occurred, and if so,
undo enough of the changes so that there are no collisions. While rollback ensures that
the algorithm is carried out C O K ~ X ~ ~ Y , there may be a great deal of overhead, especially
in a tightly coupled system at high temperature, where each change may collide with
many others, and where most changes will be accepted. In addition, of course, rollback
involves a large software and memory overhead since each change must be recorded in
such a way that it can be rescinded, and a decision must be reached about which changes
are to be undone.

For some cost functions and sets of changes, it may be possible to divide the possible
changes into classes such that parallel changes within a class do not collide. An important
model in statistical physics is the Potts mode1[13], whose cost function is the same as
the communication part of the load balance cost function. If the underlying graph is a
square lattice, the graph nodes may be divided into ‘red’ and ‘black’ classes, so called
because the arrangement is like the red and black squares of a checkerboard. Then we
may change all the red nodes or all the black nodes in parallel with no collisions.

Some highly efficient parallel simulated annealing algorithms have been imple-
mented[l4] for the Potts model using clustering. These methods are based on the locality
of the PoUs cost function: the change in cost function from a change in the color of
a graph node depends only on the colors of the neighboring nodes of the graph. Un-
fortunately in our case the balance part of the cost function interferes with this locality in
that widely separated (in terms of the Hamming distance) changes may collide, so these
methods are not suitable for load-balancing.

In this paper we shall use the simple collisional simulated annealing algorithm, making
changes without checking for parallel collisions. Further work is required to invent and
test more sophisticated parallel algorithms for simulated annealing, which may be able to
avoid the degradation of performance caused by parallel collisions without unacceptable
inefficiency from the parallelism[8].

53. Clustering

Since the basic change made in the graph coloring problem is to change the color of
one node, a boundary can move at most one node per iteration. The boundaries between
processors are diffusing toward their optimal configurations. A better change to make is

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC LOAD BALANCING ALGORITHMS 467

to take a connected set of nodes which are the same color, and change the color of the
entire set at once[l41. This is shown in Figure 6, where the cluster is chosen first by
picking a random node; we then add nodes probabilistically to the cluster, and in this
case the neighbor is added with probability 0.8 if it has the same color, and never if
it has a different color. Once a neighbor has failed to be added, the cluster generation
finishes. The coloring of the graph becomes optimal extremely quickly compared to the
single color change method of Figure 4.

zero
temperature

Cluster
99% Neighbor

1% Seed

high
temperature

Figure 6. Same as Figure 4. except the basic move is to change the color of a connected cluster of
nodes

Figure 7 shows the clustered simulated annealing running in parallel, where 16 clusters
are chosen simultaneously. The performance is degraded, but still better than that in
Figure 5, which is parallel but with single color changes.

5.4. Summary of the algorithm

The annealing algorithm as presented so far requires several parameters to be chosen for
tuning, which are in italic fonr in the description below.

First we pick the initial coloring of the graph so that each graph node takes a color
corresponding to the processor in which is currently resides, We form a population table,
of which each processor has a copy, of N,, the number of nodes which have color q.
We pick a value for p , the importance of communication.

We pick a maximum temperature and the number of stages during which the
temperature is to be reduced to zero. Each stage consists of a number of changes to
the graph coloring which may be accepted or rejected, with no communication between
the processors. At the end of the stage, each processor has a different idea of the
population table. and the colors of neighboring graph nodes which are in different
processors. because each processor has made changes without knowledge of the others.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

R. D. WILLIAMS 468

zero
temperature

Parallel
Cluster

99% Neighbor
1% Seed

high
temperature

Figure 7 . Same as Figure 5. except that the cluster method is being carried out in parallel by 16
processors

At the end of the stage, the processors communicate to update the population tables
and local neighbor information so that each processor has up-to-date information. Each
stage consists of either having a given number of accepted changes, or having a given
number of rejected changes, whichever comes first, followed by a loosely synchronous
communication between processors.

Each trial move within a stage consists of looking for a cluster of uniform color,
choosing a new color for the cluster, evaluating the change in cost function, and using the
Metropolis criterion to decide whether to accept it. The cluster is chosen by first picking
a random graph node as a seed, and probabilistically forming a cluster. Neighboring
nodes are added to the cluster with a given cluster probability if they are the same color
as the seed and reside in the same processor.

The proposed new color for the cluster is chosen to be either random, with given seed
probability, or to be a random color chosen from the set of neighbors of the cluster. The
Metropolis criterion is then used to decide if the color change is to be accepted, and if
so, the local copy of the population table is updated.

6. RECURSIVE BISECTION

Rather than coloring the graph by direct minimization of the load-balance cost function,
we may do better to reduce the problem to a number of smaller problems. The idea
of recursive bisection is that it is easier to color a graph with two colors than many
colors. We first split the graph into two halves, minimizing the communication between
the halves. We can then color each half with two colors, and so on, recursively bisecting
each subgraph.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC LOAD BALANCING ALGORITHMS 469

There are two advantages to recursive bisection: firstly that each subproblem (coloring
a graph with two colors) is easier than the general problem; and secondly that there is
natural parallelism. While the first stage is splitting a single graph in two, and is thus a
sequential problem, there is two-way parallelism at the second stage, when the two halves
are being split, and four-way parallelism when the four quarters are being split, Thus
coloring a graph with P colors is achieved in a number of stages which is logarithmic
in P.

Both of the recursive bisection methods we shall discuss split a graph into two by
associating a scalar quantity s, with each graph node e, which we may call a separator
&ld. By evaluating the median S of the s,, we can color the graph according to whether
s, is greater or less than S. The median is chosen as the division so that the numbers
of nodes in each half are automatically equal; the problem is now reduced to that of
choosing the field s, so that the communication is minimized.

6.1. Orthogonal recursive bisection

A simple and cheap choice[4] for the separator field is based on the geometrical position
of the finite elements in the mesh. We might let the value of s, be the xcoordinate of the
center of mass of the element, so that the mesh is split in two by a median line parallel
to the y-axis. At the next stage we split the submesh by a median line parallel to the
x-axis, alternating between x and y stage by stage, as shown in Figure 8.

Extensions of this method might be

0 to decide at each stage whether the horizontal or vertical split were better,
0 to calculate the moment of inertia tensor of the set of element centers, and take the

bisection as the line perpendicular to the axis of minimum moment.

In each case, the set of elements is considered to be simply a set of points with geometrical
position and all connective information ignored; to have any hope of optimality in this
bisection, the geometry of these points must in some sense be close to the graph we are

ying to bisect.

Figure 8. Load-balancing by ORB for four processors. The elements (left) are reduced to points at
their centers of mass (middle), then split into two vertically, then each halfspla into two horizontally.

The result (right) shows the assignment of elements to processors

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

R. D. WILLIAMS 470

7. EIGENVALUE RECURSIVE BISECTION

Better but more expensive methods for splitting a graph are based on finding a particular
eigenvector of a sparse matrix which has the structure of the adjacency matrix of the
graph, and using this eigenvector as a separator field[l5-17].

We may express the mincut problem algebraically by associating a variable x, with
each node of the graph, which may be 1 or -1 corresponding to the two sides of the
cut. The communication part of the cost function may be expressed as

e 4

where the sum is over nodes which are connected by an edge of the graph. To cut the
graph into two equal pieces, we require that the same number of the x, be 1 as -1,
which means that the balance constraint must be satisfied:

Exe = o
e

The minimization of Hc0- with the balance constraint is a difficult problem. However,
if we allow the xu to be continuous rather than discrete variables, it reduces to a simple
eigenvector calculation. Neglecting the factor of 1/4, the matrix associated with the quad-
ratic form of Hco,,,,,, may be written as Q = D - A, where A is the adjacency matrix
of the graph, with Ad = 1 iff e and f are connected by an edge, and D is the diagonal
matrix with D,, being the degree of the graph node e. Q is known as the Laplacian
matrix of the graph.

Since Hco- is positive semi-definite, all the eigenvalues of Q are non-negative;
furthermore there is a trivial zero eigenvalue corresponding to the state with all the
x, equal. This state cannot satisfy the balance constraint, so we must consider other
eigenstates of Q. If the graph we are trying to split is not connected, there are other
zero-eigenvector states, such that x, is constant on each connected subgraph. We shall
assume at this point that the graph is connected, so that there is only one zero-eigenvalue
state.

Let ye be the components of the eigenvector of Q with smallest positive eigenvalue. The
orthogonality of this state to the zero-eigenvalue state ensures that the balance constraint
is satisfied, at least in the continuous sense. Now we may try to obtain a solution of the
original discrete optimization using the eigenvector y.

The simplest approach, which seems to be quite effective, is to use the components of
y as a separator field: find the median value of the ye and split the graph according to
whether ye is greater or less than the median.

If we split a connected graph in two equal pieces while minimizing the boundary, we
would expect each half to be a connected subgraph of the original graph. This intuition
is supported by a theorem of Fiedler[l8] that when we do the splitting by the second
eigenvector of the Laplacian matrix, as above, then the halves are indeed connected. This
means that in subsequent bisections, the graph will be connected, as assumed above.

To calculate this second eigenstate, we use the Lanczos method[15,19,20]. We can
explicitly exclude the eigenvector of value zero because the form of this eigenvector
is equal entries for each element of the vector. The accuracy of the Lanczos method

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

47 1 DYNAMIC LOAD BALANCING ALGORITHMS

increases quickly with the number of Lanczos vectors used. We find that 30 Lanczos
vectors are sufficient for splitting a graph of 4000 nodes.

A closely related eigenvector method[l6,171 is based on the second highest eigen-
vector of the adjacency matrix of the graph, rather than the second lowest eigenvector
of the Laplacian matrix. The advantage of the Laplacian method however is in the
implementation: the first eigenvector is known exactly (the vector of all equal elements),
so that it can be explicitly deflated in the Lanczos method.

8. SOFTWARE FOR UNSTRUCTURED MESHES (DIME)

Applications such as supersonic and incompressible flow, 3-D electrostatics and stress
analysis have been implemented with DIME (distributed irregular mesh environment)[2].
DIME is a programming environment for doing distributed calculations with unstructured
triangular meshes. There are sequential tools for defining a domain to be meshed and
coarsely meshing the domain, then the coarse mesh is loaded into a single processor of
the distributed machine and may be refined, topologically changed, and load balanced,
these operations being controlled by an application code which is linked with the DIME
library.

The application code is responsible for defining a set of data which exists at each
element, node, boundary node and boundary edge of the mesh, containing data relevant
to the application code. For example, in the Laplace solver, a variable psi is stored
in each node, being the value of the solution at that node, and geometrical data are
associated with each element to calculate the stiffness matrix. The application code may
loop through all the elements or nodes of the mesh, and for a particular element loop
through the neighboring node or element structures.

The writer of a DIME application code must be aware of the distributed nature of
the calculation in the sense that some function calls are loosely synchromus[3]. This is
because whenever a communication occurs between two processors, the receiver must
expect the message it is to get from the sender, and will wait until such a message is
received. If some loosely synchronous function has been called in some processors but
not in others, deadlock will occur while processors wait for messages that never come.

An example is the mesh migration function used for load-balancing. This function is
used by first deciding which element of the mesh goes to which processor, and calling
a function to inform DIME of each decision. We then call the loosely synchronous
migration function balance 0. Load-balancing thus has two distinct phases: the
decision about which element goes where, followed by the loosely synchronous migration
of the elements to their new processors. This latter part is time-consuming, sending
structures with all their application data, memory allocation and freeing, informing
other processors of the new locations of the elements and nodes, and acknowledgment
messages.

Our approach to element migration is to make all the decisions, then migrate all the
elements, rather than sending individual elements asynchronously and individually.

9. TESTING METHOD

We have tested these three load-balancing methods using a simple DIME application
which solves Laplaces’s equation. The test-bed application is to solve Laplace’s equation

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

R. D. WILLIAMS 472

L I

Figure 9. Solution of the Laplace equation used to test load-balancing methods. The outer boundary
has voltage increasing linearly fiom -1.2 to 1.2 in the vertical direction, the light shade is voltage

I and the dark shade voltage -1

with Dirichlet boundary conditions, in the domain shown in Figure 9. The square outer
boundary has voltage linearly increasing vertically from - 1.2 to +1.2, the lightly shaded
S-shaped internal boundary has voltage +1, and the dark shaded hook-shaped internal
boundary has voltage -1. Contour lines of the solution are also shown in the Figure,
with contour interval 0.08.

The test begins with a relatively coarse mesh of 280 elements, all residing in a single
processor, with the others having none. The Laplace equation is solved by Jacobi iteration,
and the mesh refined based on the solution obtained so far; then the mesh is balanced
by the method under test. This sequence: solve, refine, balance, is repeated seven times
until the final mesh has 5772 elements. The starting and ending meshes are shown in
Figure 10.

The refinement is solution-adaptive, so that the set of elements to be refined is based
on the solution that has been computed so far. The refinement criterion is the magnitude
of the gradient of the solution, so that the most heavily refined part of the domain is that
between the S-shaped and hook-shaped boundaries where the contour lines are closest
together. At each refinement the criterion is calculated for each element of the mesh,
and a value is found such that a given proportion of the elements are to be refined, and
those with higher values than this are refined loosely synchronously. For this test of load
balancing, we refined 40% of the elements of the mesh at each stage.

This choice of refinement criterion is not particularly to improve the accuracy of the
solution, but to test the load-balancing methods as the mesh distribution changes. The
initial mesh is essentially a square covered in mesh of roughly uniform density, and the
final mesh is dominated by the long, thin S-shaped region between the internal boundaries,
so the mesh changes character from two-dimensional to almost one-dimensional.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

473 DYNAMIC LOAD BALANCING ALGORITHMS

Figure 10. Initial andfinal meshes for the load balancing test. The initial mesh with 280 elements
is essentially a uniform meshing of the square, and the final mesh of 5772 elements is dominated by

the highly refined S-shaped region in the center

We ran this test sequence on 16 nodes of an NCUBE/lO parallel machine, using ORB
and ERB and two runs with SA, the difference being a factor of ten in cooling rate, and
different starting temperatures.

The Eigenvalue Recursive Bisection used the deflated Lanczos method for
diagonalization, with three iterations of 30 Lanczos vectors each to find the second eigen-
vector. These numbers were chosen so that more iterations and Lanczos vectors produced
no significant improvement, and fewer degraded the performance of the algorithm.

The parameters used for the collisionaI annealing were as folIows;

The starting temperature for the run labelled S A l was 0.2, and for the run labelled
SA2 it was 1.0. In the former case movement of the boundaries is allowed, but
a significant memory of the initial coloring is retained. In the latter case large
fluctuations are allowed, the system is heated to randomness, and all memory of the
initial configuration is erased.
The boundary importance was set at 0.1, which is large enough to make
communication important in the cost function, but small enough that all processors
will get their share of elements.
The curves labelled SAl correspond to cooling to zero temperature in 500 stages,
and those labelled SA2 to cooling in 5000 stages.
Each stage consisted of finding either one successful change (per processor) or
200 unsuccessful changes before communicating and thus getting the correct global
picture.
The cluster probability was set to 0.58, giving an average cluster size of about 22.
This is a somewhat arbitrary choice and further work is required to optimize this.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

R. D. WILLIAMS 474

In Figure 11, we show the divisions between processor domains for the three methods at
the fifth stage of the refinement, with 2393 elements in the mesh. The Figure also shows
the divisions for the ORB method at the fourth stage: note the unfortunate processor
division to the left of the S-shaped boundary which is absent at the fifth stage.

SA2 stage 5

Figure 11. Processor divisions resultingfrom the load balancing algorithms. Top, ORB at the fourth
andjfih stages; lower left, ERR at the Nth stage; lower right. SA2 at the j$th stage

10. TEST RESULTS

We made several measurements of the running code, which can be divided into three
categories: machine-independent, machine-dependent and for dynamic load-balancing.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC U)AD BALANCING ALGORITHMS 475

10.1. Machine-independent measurements

These are measurements of the quality of the solution to the graph coloring problem
which are independent of the particular machine on which the code is run.

Let us define loud imbalance to be the difference between the maximum and minimum
numbers of elements per processor compared to the average number of elements per
processor.

The two criteria for measuring communication overhead are the total traffic size,
which is the sum over processors of the number of floating-point numbers sent to other
processors per iteration of the Laplace solver, and the number ofmessuges, which is the
sum over processors of the number of messages used to accomplish this communication.

These results are shown in Figure 12. The load imbalance is significantly poorer for
both the SA runs, because the method does not have the exact balance built in as do the
RB methods, but instead exchanges load imbalance for reducing the communication part
of the cost function. The imbalance for the RB methods comes about from splitting an
odd number of elements, which, of course, cannot be exactly split in two.

There is a sudden reduction in total traffic size for the ORB method between the fourth
and fifth stages of refinement. This is caused by the geometry of the mesh as shown at
the top of Figure 11; at the fourth stage the first vertical bisection is just to the left of
the light S-shaped region creating a large amount of unnecessary communication, and
for the fifth and subsequent stages the cut fortuitously misses the highly refined part of
the mesh.

Ebmwts p r R o a u o r

Figure 12. Machine-independent measures of load-balancing performance. {a) percentage load
imbalance

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

476 R. D. WILLIAMS

o ' " " ' " ' " " ' ~ I
0 100 200 300 400

Ehmanb per Pmauor

loo 1 1 , , 1 , , , , 1 , , , , I

I

SAl

ERB
SA2

100 200 am 4M)

Figure 12 (cont.) (b) total a m o m of communication; (c) total number of messages

0
bmnb p r Rocusor

10.2. Machine-dependent measurements

These are measurements which depend on the particular hardware and message-passing
software on which the code is run. The primary measurement is, of course, the time
it takes the code to run to completion; this is the sum of start-up time, load-balancing
time, and the product of the number of iterations of the inner loop times the time per
iteration. For quasistatic load-balancing, we are assuming that the time spent in the inner

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC LOAD BALANCING ALGORITHMS 477

loop is much longer than the load-balance time, so this is our primary measurement of
load-balancing performance. Rather than use an arbitrary time unit such as seconds for
this measurement, we have counted this time per iteration as an equivalent number of
floating-point operations (flops). For the NCUBE this time unit is 15 ,US for a @-bit
multiply. Thus we measureflops per iteration of the Jacobi solver.

The secondary measurement is the communication time per iteration, also measured in
flops. This is just the local communication in the graph, and does not include the time
for the global combine which is necessary to decide if the Laplace solver has reached
convergence.

Figure 13 shows the timings measured from running the test sequence on the 16-
processor NCUBE. For the largest mesh, the difference in running time is about 18%
between the cheapest load balancing method (ORB) and the most expensive (SA2). The
ORB method spends up to twice as much time communicating as the others, which is
not surprising, since ORB pays little attention to the structure of the graph it is splitting,
concentrating only on getting exactly half of the elements on each side of an arbitrary
line.

The curves on the right of Figure 13 show the time spent in local communication at
each stage of the test run. It is encouraging to note the similarity with the lower left
panel of Figure 12. showing that the time spent communicating is roughly proportional
to the total traffic size, confirming this assumption made in Section 2.

10.3. Measurements for dynamic load-balancing

After refinement of the mesh, one of the load-balancing algorithms is run and decisions
are reached as to which of a processor’s elements are to be sent away, and to which
processor they are to be sent. As discussed in Section 8, a significant fraction of the time
taken by the load balancer is taken in this migmtion of elements, since not only must the
element and its data be communicated, but space must be allocated in the new processor
and other processors must be informed of the new address of the element, and so on.
Thus an important measure of the performance of an algorithm for dynamic (in contrast
to quasidynamic) load balancing is the number of elements migrated, as a proportion of
the total number of elements.

Figure 14 shows the percentage of the elements which migrated at each stage of
the test run. The one which does best here is ORB, because refinement causes only
slight movement of the vertical and horizontal median lines. The SA runs are different
because of the different starting temperatures: SAl started at a temperature low enough
that the edges of the domains were just ‘warmed up’, in contrast to SA2, which started
at a temperature high enough to completely forget the initial configuration, and thus
essentially all the elements are moved. The ERB method causes the largest amount
of element migration, which is because of two reasons. The first is because some
elements are migrated several times because the load-balancing is done in log# stages
for P processors; this is not a fundamental problem, and arises from the particular
implementation of the method used here. The second reason is that a small change
in mesh refinement may lead to a large change in the second eigenvector; perhaps a
modification of the method could use the distribution of the mesh before refinement to
create an inertial term so that the change in eigenvector as the mesh is refined could be
controlled.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

478 R. D. WILLIAMS

ORB

SAl

ERE

SA2

o " ' " ' " ' ' " " ' ' ' ~
0 100 200 300 400

Ebmenb p r Pmcuwr

ORB

SAl

ERB

SA2

0 ' " " I ' " " "
0 loo 200 300 490

Ebnmnb p r Prowaror

Figure 13. Machine-dependent measures of load balancing performance. Left, r m i n g time per
Jacobi iteration in units of the time for a floating-point operation flop); right, time spent doing

local communication in flops

The migration time is only part of the time take to do the load-balancing, the other
part being that taken to make the decisions about which element goes where. The total
times for load balancing during the seven stages of the test run {solving the coloring
problem plus the migration time) are shown in the table below:

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC LOAD BALANCING ALGORITHMS 479

t i

t 1

Figure 14. Percentage of elements migrated during each load balancing stage. The percentage may
be greater than 100 because the recursive bisection methodr may cause the same element to be

migrated several times

Method Time, min

ORB
ERB
SAl
SA2

5
11
25

230

For the test run, the time per iteration was measured in fractions of a second, and it
took only a few iterations to obtain full convergence of the Laplace equation, so that a
high-quality load balance is obviously irrelevant for this simple case. The point is that the
more sophisticated the algorithm for which the mesh is being used, the greater the time
taken in using the distributed mesh compared to the time taken for the load balance. For
a sufficiently complex application, for example unsteady reactive flow simulation, the
calculations associated with each element of the mesh may be enough that a few minutes
spent load balancing is by comparison negligible, so that the quasidynamic assumption
would be justified.

11. CONCLUSIONS
The Laplace solver that we used for the test run embodies the typical operation that
is done with finite-element meshes, which is matrix-vector multiply. Thus we are not
testing load balancing strategies just for a Laplace solver, but for a general class of
applications, namely those which use matrix-vector multiply as the heart of a scheme

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

480 R. D. WILLIAMS

which iterates to convergence on a fixed mesh, then refines the mesh and repeats the
convergence.

Each load-balancing algorithm may be measured by three criteria:

the quality of the solution it produces, measured by the time per iteration in the
solver

0 the time it takes to do the load-balancing, measured by the time it takes to solve
the graph coloring problem and by the number of elements which must then be
migrated

0 the portability of the method for different kinds of applications with different kinds of
meshes, and the number of parameters that must be set to obtain optimal performance
from the method.

Orthogonal recursive bisection (ORB) is certainly cheap, both in terms of the time it
takes to solve the graph coloring problem and the number of elements which must be
migrated. It is also portable to different applications, the only required information being
the dimensionality of the mesh, and easy to program. Our tests indicate, however, that
more expensive methods can improve performance by over 20%. Because ORB pays no
attention to the connectivity of the element graph, one suspects that as the geometry of
the underlying domain and solution become more complex, this gap will widen.

Simulated annealing (SA) is actually a family of methods for solving optimization
problems. Even when run sequentially, care must be taken in choosing the correct set
of changes that may be made to the state space, and in choosing a temperature schedule
to ensure a good optimum. We have tried a ‘brute force’ parallelization of simulated
annealing, essentially ignoring the parallelism. For sufficiently slow cooling this method
produces the best solution to the load-balancing problem when measured either against
the load balance cost function, or by timings on a real parallel computer. Unfortunately
it takes a long time to produce this high-quality solution, perhaps because some of
the numerous input parameters are not set optimally. More probably a more sensitive
treatment is required to reduce or eliminate parallel collisions[8]. Clearly further work
is required to make SA a portable and efficient parallel load balancer for parallel finite-
element meshes. True portability may be difficult to achieve for SA, because the problem
being solved is graph coloring, and graphs are extremely diverse; perhaps something
approaching an expert system may be required to decide the optimal annealing strategy
for a particular graph.

Eigenvalue recursive bisection (ERB) seems to be a good compromise between the
other methods, providing a solution of quality near that of SA at a price a little more
than that of ORB. There are few parameters to be set, which are concerned with the
Lanczos algorithm for finding the second eigenvector. Mathematical analysis of the ERB
method takes place in the familiar territory of linear algebra, in contrast to analysis of
SA in the jungles of non-equilibrium thermodynamics. A major point in favor of ERB
for balancing finite-element meshes is that the software for load-balancing with ERB is
shared to a large extent with the body of finite-element software: the heart of the eigen-
vector calculation is a matrix-vector multiply, which has already been efficiently coded
elsewhere in the finite-element library.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DYNAMIC M A D BALANCING ALGORITHMS 48 1

ACKNOWLEDGEMENTS

This work was supported in part by Department of Energy grant DE-AC03-81ER40050.

REFERENCES

1.

2.

3.

4.

5.

6.

7.
8.

9.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

N. P. Chriochoides, C. E. Houstis, E. N. Houstis, P. N. Papachiou, S. K. Kortesis and J.
R. Rice, Domain Decomposer: A Software Tool for Mapping PDE Computations to Parallel
Architectures. Perdue University Computer Science Department CSD-TR-1025 (unpublished).
R. D. Williams, DIME: A User’s Manual. Caltech Concurrent Computation Report C3P 861,
Feb. 1990.
G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon and D. W. Walker,
Solving Problems on Concurrend Processors, Prentice-Hall, Englewood Cliffs, NJ, 1988.
G. C. Fox in Numerical Algorithms for Modern Parallel Computers, ed. M. Schultz. Springer-
Verlag, Berlin, 1988.
S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi. ‘Optimization by simulated annealing’,
Science, 220, 671 (1983).
R. H. J. M. Otten and L. P. P. P. van Ginneken. The Annealing Algorithm, Kluwer Academic,
Boston, MA, 1989.
B. Hajek. ‘Cooling schedules for optimal annealing’, Math. Oper. Res., 13, 311, (1988).
F. Baiardi and S. Orlando, ‘Strategies for a massively parallel implementation of simulated
annealing’, Springer-Verlag Lecture Notes in Comp. Sci., 366, 273 (1989).
B. Braschi, A. G . Ferreira and J. Zerovnik, ‘On the behavior of parallel simulated annealing’, in
Parallel Computing 90, D. J. Evans, G. R. Joubert and F. J. Peters, (eds.), Elsevier. Amsterdam,
1990.
R. D. Williams. Minimization by Simulated Annealing: Is Detailed Balance Necessary?, Caltech
Concurrent Computation Project Report C3P 354. Sep. 1986.
F. Barajas and R. D. Williams. Optimization with a Distributed-Memory Parallel Processor,
Caltech Concurrent Computation Project Report C3P 465, Sep. 1987.
M. A. Johnson, Concurrent Computation and its Application to the Study of Melting in Two
Dimensions. Caltech PhD thesis (1986); also Caltech Concurrent Computation Report C3P
268; see also Chap. 17 in Reference 3.
F. Y. Wu. Rev. Mod. Phys., 54. 235 (1982).
P. D. Coddington and C. F. Baillie, Cluster Algorithms for Spin Models on MIMD Parallel
Computers, Roc. 5th Distrib. Mem. Comput. Conf., (d.) D. W. Walker, Charleston, SC. 1990.
A. Pothen, H. D. Simon and K. P. Liu. Partitioning Sparse Matrices with Eigenvectors of
Graphs, Report RNR-89-009, NASA Ames Research Center, July 1989.
E. R. Barnes, ‘An algorithm for partitioning the nodes of a graph’, SIAM J. Alg. Disc. Meth.,
3. 541 (1982).
R. B. Boppana, Eigenvalues and Graph Bisection: an Average Case Analysis, in 28th Annual
Symp. Found. Comp. Sci, 1987.
M. Fiedler, ‘Algebraic connectivity of graphs’, Czech. Math. J., 23, 298 (1973); ‘A property
of eigenvectors of non-negative symmetric matrics and its application to graph theory’, Czech.
Mdh. J., 25, 619 (1975).
G. H. Golub and C. F. van Loan. Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 1983.
B. Parlett, The Symmerric Eigenvalue Problem, Rentice-Hall, Englewood Cliffs, NJ, 1980.

 10969128, 1991, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330030502 by U

niversity O
f E

dinburgh, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

