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Two transitions in tangentially anchored nematic droplets 

R D Williams 
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX1 1 OQX, UK 

Received 9 December 1985 

Abstract. In an axisymmetric approximation we demonstrate a panty breaking transition 
to a twisted configuration in tangentially anchored nematic liquid crystal droplets. The 
twisted phase occurs when K , , s  K2,+0.431K,,. In a magnetic field there is another 
transition corresponding to the droplet axis changing from parallel to normal to the field. 

1. Introduction 

A nematic liquid crystal is anisotropic, for the rodlike molecules are on average parallel 
to a unit vector n. On macroscopic scales, n is a continuous field n ( x ) ,  and an elastic 
energy density is associated with the squares of gradients of n. Thus the elastic energy 
of a volume of nematic is proportional to the linear dimension L of the volume. For 
a compact volume, such as a drop of nematic suspended in isotropic fluid, there is 
also surface energy, proportional to 15'. Thus the internal energy of a large drop is 
dominated by the surface energy, and so the drop is spherical. At the nematic surface, 
there is energy per unit area associated with deviations of the anchoring angle from 
the easy angle [ 11. By the same dimensional reasoning as above (given more explicitly 
in 0 2 and the appendix) the anchoring angle is always the easy angle: so-called strong 
anchoring. Furthermore, spherical drops and strong anchoring hold for drops larger 
than a few microns in size. 

If the director at the surface is normal to the surface, the director points radially 
from the centre of the sphere, with perhaps a twist [2]. If the easy angle is between 
0 and 90" (conical boundary conditions), then the positions of the singularities in n 
change continuously with the elastic constants and also with the easy angle [3]. 
Furthermore, there are problems from the sign ambiguity of n, which arise for the 
following reason. Although the ends of a nematogen molecule are in general different, 
the energy difference between a parallel and an antiparallel pair is much smaller than 
the temperature, so ordering in direction n is physically the same as ordering in 
direction -n. Alternatively, the energy difference may be large and stable antiparallel 
pairs can form, in which case n is also equivalent to - n  because the pairs are symmetric. 
Thus there may be 'branch-cut surfaces' across which n changes sign. If one of these 
surfaces is bounded in part by the surface of the sphere and in part by a line disclination, 
then it cannot be removed, only moved. This is analogous to the representation of an 
angle by a real number: the number can have discontinuities of 27r even though the 
underlying angle is continuous. 

The situation is considerably simpler when the director is tangential to the surface. 
The bipolar configuration, suggested by Chandrasekhar [4] and Dubois-Violette and 
Parodi [5], seems to be adopted by many nematics. The director is parallel to curves 
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which join two diametrically opposite points of the surface of the drop, these curves 
lying on planes of constant azimuth. Twisted bipolar configurations (cf figure 2) have 
been observed [3], with the limiting case of these twisted drops where the director is 
in the azimuthal direction like the magnetic field of a straight wire: we call this the 
‘toroidal’ configuration. 

In this paper we examine tangentially anchored nematic drops, using the topology 
of the untwisted bipolar configuration, but with varying amounts of twist in the director 
field. We find that when the splay constant is small, the droplet is untwisted and when 
the splay constant is large, the droplet is twisted. 

Since nematogen molecules tend to be parallel to a magnetic field, we expect the 
axis of an untwisted drop (when the splay constant is small) to be parallel to the field, 
and that of a very twisted toroidal drop perpendicular. There is a second-order 
transition between these phases, associated with a breaking of axial symmetry. 

In the following, we use the three-term Frank energy and justify the neglect of the 
fourth (surface) term in view of the tangential anchoring assumption; a more general 
formulation of the Frank energy can be found in [ 6 ] .  We use a local surface-anchoring 
energy; a more general treatment of liquid crystal surfaces can be found in [7]. 

2. Theory 

Let V, be a volume of nematic liquid crystal, which can be considered as a fiducial 
volume V multiplied by a length scale R. Later V will be the unit sphere and V, a 
sphere of radius R. 

A unit-vector field n(x), X E  V, is the scaled director ficld. The equilibrium shape 
and director for given R are obtained by minimising the elastic energy, which is a sum 
of a volume and a surface energy. The volume energy is the Frank elastic energy [8], 
which is a sum of contributions from splay, bend and twist, each with an associated 
elastic constant, which we shall call KI1 = K ,  K,, = K K ~ ,  K22 = K K ~ ,  respectively. Since 
the Frank energy is a volume integral of squares of gradients of n, K must have 
dimensions of force. We can thus write the Frank energy as .rrKRu[ n] where the factor 
.rr has been removed for later convenience, and 

u[n] = ( l / r )  F(n, Vn) dx 
V 

F=$(div n ) 2 + f ~ , ( n x c u r l  t ~ ) ~ + ; ~ , ( n . c u r l  r ~ ) ~ .  (2.2) 
The surface energy may be written as 

rWR2 j s f ( n .  k )  dx (2.3) 

where S is the surface of V, W is a constant with the dimensions of surface tension 
and f is a dimensionless function of the angle between the director and the surface 
normal k. The angle corresponding to the minimum o f f  is the easy angle [ 13 and W 
times the second derivative off at the easy angle is a measure of the anchoring energy 
coefficient [l]. With no loss of generality, we can adjust f to make W exactly the 
anchoring energy coefficient. 
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The quantity to be minimised is then the sum of volume and surface energies, 
which we can write as ~ r K R u , [ n ] ,  where 

(2.4) 

where p = W R /  K .  To keep n unit we introduce two Lagrange multiplier fields, one 
for volume and one for surface, and thus define 

r r 
ii,[n]=u,[n]-5 J A(x)n2dx-fJ  A(x)n2dx 

V s 

which gives the Euler-Lagrange equations 

a F  a ( - a F )  =An,  
a n ,  ax, an,, 

aF 
an,, 

k,-+ pkf‘(n * k) = AnL 

(2 .5)  

( 2 . 6 )  

( 2 . 7 )  

where (2 .6)  is true in the bulk and (2 .7)  on the surface. Taking ( 2 . 7 )  in the directions 
n and k allows elimination of A, and another equation is from the direction n x k: 

n .  k 
1 - ( n . k ) 2  

div n + p f ’ ( n .  k ) +  K [ k, n, curl n] = 0 (2.8a) 

~ ~ ( n x k ) ~ ( n . c u r l n ) = ~ , ( n .  k ) [ (nxk)  * (nxcur ln ) ] .  ( 2 . 8 b )  

We wish to simplify the problem by removing these complicated surface boundary 
conditions and removing the necessity to minimise over droplet shapes. If  p = W R /  K 
is large, the boundary condition (2.8) becomes simply f’( n k) = 0, which is the strong 
anchoring regime. Elastic constants for short-rod nematics are in the range dyn 
[8] and a recent measurement of the anchoring coefficient for a nematiclliquid interface 
shows that W is of the order dyn cm-’ [ 13. Thus p can be considered large when 
R 2 10 pm.  Droplets measured in [ 3 ]  are about 30 p m  in radius, so it is not grossly 
wrong to consider p large. Even with strong anchoring, however, it is not clear that 
the surface energy contribution is small; but for tangential anchoring, when f’(0) = 0, 
it is shown in the appendix that for p +a, the minimum of the total energy U,[ n]  is 
the same as the minimum of the Frank energy u[n] with the restriction n - k = 0 at the 
boundary. Given n k = 0, the surface tension must be constant, so the drop must be 
spherical. We take the volume V to be the unit sphere. For tangential anchoring and 
large drops, the boundary conditions are then 

n . k = O  

n - curl n = 0. 

We should mention at this point two additional contributions to the bulk Frank- 
Oseen energy, both of which are usually ignored because the) can be written as surface 
terms. Here we are considering the surface terms explicitly and shall show that in the 
tangentially anchored case they can also be ignored. The additions can be written [6] 

KISV (nV * n) - (K, ,+K2,)V - (nV * n -(n. V ) n ) .  (2.10) 

The first term, the so-called Nehring-Saupe term, and also the first part of the second 
term, is a surface integral of ( n  - k)(V - n )  and n k = 0 for tangential anchoring. The 
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first part of the second term involves d S  k [( n .V)n]  which for tangential n is simply 
41rR, and is an additive constant to the total energy. 

The energy functional is a sum of splay, bend and twist contributions: 

(2.11) 

We expect each of these three terms to contribute about equally, so that a small splay 
(bend, twist) constant is associated with a large u,(uB, uT), in the same way that any 
small elastic modulus causes a large distortion. 

Experimental studies indicate that tangential boundary conditions imply the bipolar 
configuration: there is a singularity at diametrically opposite points of the surface (the 
‘poles’), with the director locally pointing radially away from each singularity. Under 
some conditions [5, 9, 101 the director field lines are planar or the parity symmetry 
may be broken, giving a twisted appearance to the drop [2] (cf figures 2 ( b )  and (c)).  
We have calculated numerically [ 111  the director field with the one-constant approxima- 
tion K B  = K ~ =  1 ,  and no other approximation, and the drop has the appearance shown 
in figure 1. It can be seen that circles (overdrawn in figure 1) which pass through both 
poles are a good approximation to the field lines. It is for this reason that we use an 
orthogonal coordinate system tailor-made for the singularities of the problem. 

Figure 1. Exact director configuration in the one-constant approximation, from [9], with 
overlaid circles to show accuracy of fit. 

Bispherical coordinates (6, 7, 4 )  consist of two poles a distance 2 apart connected 
by an axis of cylindrical symmetry, which is associated with the angle 4. Part of a 
plane of constant 4 is illustrated in figure 2(a).  The lines of constant 7 are circles 
passing through both poles and the orthogonal set of constant 6 are also circles. The 
transformation to cylindrical coordinates (x, r, 4 )  measured from an origin midway 
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Figure 2. ( a )  Bispherical coordinate system with unit vectors. The vector I$ is normal to 
the paper. ( b )  Director field lines for T( ~ / 2 )  = 29". ( c )  Field lines for 1) = 25", T( 7)) = 22". 

between the poles is 

x = z-' cos 5 
r = Z-' sin 5 sin 7 

where 

(2.12) 

Z = 1 +sin 5 cos 7, 

The quadrant in figure 2( a )  is the area 0 s 6 s 77/2,0 s 77 s 77/2,  and the metric elements 
h, = ds /d& etc, are given by 

h, = Z-' 

h, = Z-' sin 5 
h, = Z-'  sin 5 sin 7. 

(2.13) 
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We now assume the director to have no 4 component, which we justify by looking 
at figure 1, and write 

n =  %cos[T(v)]+f s i n [ ~ ( v ) ]  (2.14) 

where & 4, f is the triad of unit vectors and the angle T is the twist angle. A field 
line remains on a surface of constant 7 and ends at each of the poles and makes a 
constant angle with planes through the poles. The surface 7 = 7r/2 is a sphere which 
is the surface of the drop, so the tangential anchoring condition is satisfied. Figure 
2(b) illustrates the field lines on the surface of the drop and figure 2(c) shows them 
on an interior surface. Using the ansatz (2.14) and the divergence theorem, after some 
algebra we find 

u s = /  d V f ( d i v n ) ’ = 4 ~  d7  (7 -cos 7 sin 7) cos2 T ( 2 . 1 5 ~ )  

uT = 5 d V f( n - curl n)’ = 27r d 7  7(dT/d7 + sin T cos T cot 7)2 (2.15 b )  

U B  = 1 d V  $(n x curl n)’ 

It can be seen that the twist and bend energies are logarithmically infinite at the axis 
(7 + 0) unless T + 0. If (x, r, 4) is the cylindrical coordinate system, the director field 
must be n = x  ̂ at the axis. An infinite splay energy n = i will escape by converting to 
finite splay and finite bend energy [8], and an infinite bend energy n = f will escape 
by converting to finite bend and finite twist energy [12]. Here we have the latter. 
Indeed, for small bend constant we expect the drop to have n = f everywhere except 
near the axis, where there is a twist relaxation-this limit we call the toroidal configur- 
ation. The condition n = 2, together with n curl n = 0 on the surface (cf (2.9)), give 
the boundary conditions for ~ ( y ) :  

(2.16) 

The director configuration T (  7) is obtained by minimising the sum of the splay, twist 
and bend energies (2.15a, b, c )  respectively. The Euler-Lagrange equation is 

=Sin27[(4-2K,+3K~) cot 7+(-4+2K~+Kg)T cOSeC27 

+ 2 7  Cot2 ~ ( K T - ~ K B C O S ’  T ) ] .  (2.17) 
One solution is T (  7) = 0, corresponding to the parity symmetric untwisted drop, with 
energy 

(2.18) 
which has no dependence on the twist elastic constant. The ratio u,/uB is 7.5, so we 
expect this solution to be the absolute minimum when the bend constant is large. 

In the rest of this section, we make some analytic estimates of the solution ~ ( 7 )  
and in § 3 we shall calculate it numerically. 

u [n ]  = us+ KBUB=4+ K g ( 3  - 7r2/4) 
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We can calculate the energy u[n] when T is slightly different from zero, by linearising 
the Euler-Lagrange equation, and solve the resulting Sturm-Liouville problem, to 
obtain a set of eigenfunctions T,( q )  with eigenvalues A i  such that for small deviations 
from 7=0: 

(2.19) 

When these eigenvalues are all positive, the solution T (  q )  = 0 is stable, and if the 
transition is second order, the line min{Ai} = 0 in the (KB,  KT) plane separates the parity 
symmetric bipolar phase from the twisted phase. The lowest-A eigenfunction will have 
no nodes and will satisfy the boundary conditions (2.16), so we approximate it by 
sin q, in which case the energy can be calculated and we find that the untwisted drop 
is realised when 

4 r 2 -  16 
K g  3 ( 1 - KT) -- 2.32( 1 - KT) 

20 - 7r2 
(2.20) 

so that for large K B  and for large KT the untwisted configuration is the minimum energy. 
The only dependence on dT/dq in the energy functional occurs in the twist energy. 

Thus when KT = 0, the energy minimisation can be done separately at each value of 
q ;  the splay and bend energies are quadratic in sin'?, which can be minimised 
immediately: 

4 .  
(2.21) 

When this expression is less than zero or greater than 1,  T is 0 or 7r/2 respectively. 
When q is close to its limits, 

(2.22) 

For K g  2 4 the untwisted bipolar drop is preferred; for K~ 3 $ there is part untwisted 
(small q )  and part with 7 = 7r/2; and for K E G  $, there is twist for all q a 0, with T = 7r/2 
for the larger values. 

We shall now investigate the response of the drop to a weak magnetic field. The 
nematogen molecules tend to line up parallel to the field, so we expect the untwisted 
drop to have its axis parallel to the field and the limiting toroidal drop to have its axis 
normal to the field. If the field is not weak, the director field will be distorted, and in 
the toroidal case lose axial symmetry, so that all the analysis of this paper would be 
invalid. We would, however, expect a second-order transition to be associated with 
the loss of axial symmetry, and we shall calculate the transition line in the weak field 
case. 

The energy density associated with the magnetic field is proportional [8] to ( n  B)', 
and for axisymmetric drops, we find that the axis is parallel to the field if 

+< V-' dV(n.x*)2 I 
(sin (+cos q ) 2  

z4 COS2 T (  V )  = 3 j:2 d 5  d,h,h,h, (2.23) 
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where 2 is from (2.12) and h,h,h, is the volume element from (2.13). This quantity 
is the average of the square of the component of n along the axis: for the untwisted 
drop with r = 0 it is &$, so the axis is parallel to the field, as observed experimentally 
[ 5 ] .  For the toroidal drop r = 77/2 and the average is zero, so the drop axis is normal, 
as surmised above. 

3. Calculation 

The Euler-Lagrange equation (2.17) is of boundary-layer type near r] =0,  which is 
caused by the small quantity r ]  multiplying the highest derivative. We can remove this 
singularity by transforming to the independent variable y = ln(27/7r) so that 

d2r  , d 2 r  d r  -- 
2 -  77 2+ 7-* 

dY dr] dr] 

The boundary conditions for r ( r ] )  are now 

d r  
-(y = 0) = 0 
dY 

(3.2a) 

r (y  += -CO) = 0. (3.2b) 

We directly minimise the energy u [ n ]  by the method of successive over-relaxation 
[13]. First we choose a large negative number ymin and discretise the interval (ymin, 0) 
with spacing h. The energy is then quadratic in the discretised values ri and we cycle 
through these points, adjusting ri to minimise the energy locally. This process is 
completely equivalent to the numerical solution of the diffusion-like equation of 
Euler-Lagrange form: 

a 7  a F  a a F  -- - --+- -. 
a t  a7  ay a?' (3 .3)  

We find that the energy decreases monotonically to a limit, and we use the convergence 
criterion that the change in each r, per step should be less than 10-4rad. We then 
make ymin more negative and repeat the relaxation. This is continued until a further 
decrease in ymin makes no difference within the above criterion. 

In figure 3 we show a perspective view of a droplet with the director represented 
by small cylinders. The twisted appearance of the surface is similar to figure 2(b).  

The solution r (  r ] )  can be characterised by the elastic energy U[ n ] ,  the exterior twist 
angle r( r] = ~ / 2 )  and the initial slope dr/dr](  r] = 0); these are shown in figures 4, 5 
and 6 ,  respectively, as cbntour plots in the (KB, KT) plane. In each of these figures, 
the most obvious feature is the curve joining KT = 1,  K~ = 0 to KT = 0, K B  = 4, which is 
the second-order parity breaking transition from untwisted to twisted droplets. When 
KT is large, the condition (2.20) is a good approximation: the broken line in the figures 
is the continuation of that straight line. When K~ is zero, the analysis (2.22) indicates 
that Kg=4 is a transition point: this is marked in the figures. The planar part of the 
energy surface in figure 4 is the exact expression (2.18) and the energy is zero at K B  = 0, 
KT = 0 because this is the limiting toroidal case r = 77/2 which has no splay energy. 

In figure 6 the slope of r (r] )  at r] = O  is plotted. When this is large the twist angle 
rises sharply to 77/2 and stays there, so the director is azimuthal except near the axis, 
where there is a disclination. The width of this disclination is proportional to J K ~  
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Figure 3. A perspective view of a droplet with a section removed to show the inside. The 
elastic constant ratios are K~ = 0.5, K~ = 0.6. 

L . 5  5.0 

1 2 
K B  

i . 5  

5====- 
3 

1.0 

i 
L 

Figure 4. Dimensionless energy u[n] as a contour plot in the plane K~ = K 3 J  K , ,  , 
K 2 J  K , ,  . The contour spacing is 0.5. The thin line is the phase transition line. 

= 

when K~ is small. The surface twist angle in figure 5 is 7r/2 for small K~ or small K~ 

and has a square root singularity at the phase transition line. 
We have calculated the double integral (2.23) by Simpson’s rule with 50 points 

each way and the chain curve in figure 6 shows where it is 4, and is the transition from 
the drop axis being parallel to normal (to a weak magnetic field). 
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0.6 
* T  

0 .4  
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0 

UBBA 

1 2 3 4 
X B  

Figure 5. Contour plot of the surface twist angle ~ ( 7 )  at I) = n/2 with contour interval 
lo". Data for some short-rod nematics are from [ 121; the broken line for PAP is a temperature 
variation and the circle for M B B A  is an error estimate. 

Figure 6. Contour plot of the internal twist d r / d q  at q = 0, which is the twist disclination 
strength at the axis. 
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Also marked on figure 5 are some experimental measurements of nematics [14]. 
All except one of these are short-rod nematics and one ( PBG, poly-y-benzyl-glutamate) 
is a polymer. These may not be tangentially anchored, although it is known that 
temperature [3], concentration and surfactant [lo] can all change the anchoring angle. 
It is clear, however, that short-rod nematics generally lie outside the twisted region, 
although A P A P A ~  should be somewhat twisted. The measurement of the elastic constants 
of PBG is recent and bears out theoretical studies [ 12, 131 of elastic constants of nematic 
polymers. We predict that, if an interface prefers tangential anchoring, then PBG should 
exhibit highly twisted droplets. 

4. Conclusions 

We have taken a simple approximation to the elastic energy functional for a nematic 
droplet and shown that a transition to a twisted configuration occurs for large splay 
constant. While we do not expect our results to be quantitatively correct, in view of 
the approximation, it is reasonable to expect the main features to be qualitatively 
accurate. A treatment using the full elastic energy functional could be used to measure 
elastic constants, especially since some nematics will be just inside the twisted region, 
giving great sensitivity. 

In a magnetic field, the director tends to align parallel to the field. For the untwisted 
drop, the axis must then be parallel, but for sufficiently large splay constant the axis 
is perpendicular. In this case the drop will cease to be axisymmetric, so we expect 
another transition. As above, any finite magnetic field will distort the drop and move 
the transition line, but the qualitative conclusion does not change. 

Although elastic constants are available for only one polymer nematic, theoretical 
work [15] suggests that the relatively small Kz2 and are generic features, so it 
would be interesting to observe droplets of polymer nematic to measure their twist 
characteristics, perhaps by polarised light scattering. The concentration of polymer 
affects the elastic constants and these twisted drops would be a good way of observing 
such variation. 

It should be emphasised that the results of this paper are based on two assumptions. 
The first is that the drops are large enough that volume effects dominate surface effects 
and the second is that based on figure 1 ,  that the director always lies on a tactoid 
surface, which is a circular arc rotated about a non-diametric line. These assumptions, 
while somewhat special, are reasonable. 

Appendix 

Let n ( x )  be a unit vector field on a domain V (the inside plus surface of the drop) 
and k ( x )  a vector field on a subset Sc V .  S is the surface of the drop and k the 
outward normal. We can write the surface energy as f o + i ( n  k ) 2  where fo is the 
isotropic part of the surface tension, which we henceforth ignore. The total energy is 

u P [ n ] = u [ n ] + ~  t ( n . k ) 2 d x  ( '41)  I, 
where U is the positive-definite Frank energy. We show that, when p + CO, the minimum 
of u,[n] is the minimum of urn] with the boundary condition n - k = 0. 
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Define the functional U; of a scalar field, ~ ( x ) ,  X E  S, as 

u L [ q ]  = min u[n] 
n.k=q 

which is the minimum of the Frank energy when n k = 7 is specified on S. We assume 
that U ’  is sufficiently smooth that orthonormal real eigenfunctions Q ( x )  exist on S so 
that if 

~ ( x )  C 7iQi(x) (‘43) 

u ’ [ ~ I = u ’ [ o I + C P ~ ~ ,  +CfqiqS+0(7’). (A4) 

i 

then 

Note that the qi are bounded below because U[ n] is positive-definite. We can now write 

+...  - P f  - - 
2( qi + p )  

so that 

which is the minimum Frank energy subject to the boundary condition n * k = 0 on S. 
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