
A Newton-GMRES Method for the Parallel Navier-Stokes Equations

J. Häusera, R.D. Williamsb, H.-G. Paapc, M. Speld, J. Muylaertd and R. Winkelmanna

aCenter of Logistics and Expert Systems, Salzgitter, Germany
bCalifornia Institute of Technology, Pasadena, California
cGenias GmbH., Regensburg, Germany
dESTEC, Noordwijk, The Netherlands

1. INTRODUCTION

CFD is becoming increasingly sophisticated: grids define highly complex geome-
tries, and flows are solved involving very different length and time scales. The solu-
tion of the Navier-Stokes equations must be performed on parallel systems, both for
reasons of overall computing power and cost effectiveness.

Complex geometries can either be gridded by completely unstructured grids or by
structured multiblock grids. In the past, unstructured grid methods almost exclu-
sively used tetrahedral elements. As has been pointed out in [1] and recently in [2]
this approach has severe disadvantages with regard to program complexity, comput-
ing time, and solution accuracy as compared to hexahedral finite volume grids. Multi-
block grids that are unstructured on the block level but structured within a block
provide the geometrical flexibility and retain the computational efficiency of finite dif-
ference methods.

In order to have the flow solution independent of the block topology, grids are
slope continuous, and in the case of the N-S solutions an overlap of two points in each
coordinate direction is provided. This causes a memory overhead: if N is the number
of internal points in each direction for a given block, this overhead is the factor
(N+4)3/N3. The overhead is caused by geometrical complexity, i.e., to generate a block
topology that aligns the flow with the grid as much as possible [3].

Since grid topology is determined by both the geometry and the flow physics,
blocks are disparate in size, and hence, load balancing is achieved by mapping a
group of blocks to a single processor. The message-passing algorithm must be able to
handle efficiently the communication between blocks that reside on the same proces-
sor, meaning that there can only be one copy operation involved. Message passing
(PVM or MPI) is restricted to a handful of functions that are encapsulated, and thus
full portability is achieved. In addition, the code is written in ANSI-C to guarantee
portability and provide significant advantages over Fortran (see for example [4]). A
serial machine is treated as a one-processor parallel machine without message pass-
ing. Therefore the code, Parnss [5], will run on any kind of architecture. Grids gener-
ated by GridPro [7] or Grid*[1] (Plot3D format) can be directly used.

Available parallelism (the maximum number of processors that can be used for a
given problem) is determined by the number of points in the grid: a tool is available to

split large blocks, if necessary.
Regarding the solution algorithm for the Navier-Stokes equations, an explicit algo-

rithm is easiest, but is not as efficient as relaxation schemes in calculating the steady
state. Often relaxation schemes are used, but it should be remarked that even these
methods may not converge for highly stretched grids with large aspect ratios (106), as
is needed in most viscous flows.

Thus, we shall use implicit methods for these grids, with a linear solver chosen
from the Krylov family. To make good use of these techniques, we need an effective
and efficient preconditioner; this paper is about the convergence properties of the
Navier-Stokes code for different preconditioners used on parallel architectures.

2. Solving the N-S Equations

An implicit step of the discretized N-S equations can be cast in the form of a set of
nonlinear equations for the flow variables, whose numerical solution is by a Newton
scheme. The computational kernel is a linear solve with the matrix being the Jacobian
of the equations. There are numerous schemes for such solves, such as Jacobi relax-
ation or lower-upper triangular split (Gauss-Seidel). As mentioned above, these
schemes are slow to converge for a stiff system, caused by widely varying temporal
and spatial scales.

The numerical solution proceeds in five major stages: in this work, stage (4) will be
described in some detail.
1. Topology: Perform domain decomposition of the solution domain.
2. Grid generation: Create a high-quality grid within each domain. Spatial discretiza-

tion reduces the N-S equations to a set of ODE’s.
3. Explicit Solution: Advance explicitly in time by using a two step Runge-Kutta

scheme.
4. Implicit Solution: Advance the solution implicitly in time with the backward Euler

scheme, thus requiring solution of nonlinear equations, which can be solved by a
Newton or quasi-Newton algorithm, which in turn requires solving sets of linear
equations: we use preconditioned GMRES for these.

5. Root Polishing: For steady state solution, use a Newton iteration to derive the
steady state, which is equivalent to an implicit step with infinite time step.

Investigations are underway to determine if it is possible to relax the accuracy with
which the nonlinear equations in (4) are solved, yet still obtain robust and accurate
convergence through stage (5).

2.1. Krylov Subspace Methods
In what follows, we describe the CG method, because it is the basis for the General-

ized Minimal Residual (GMRES) technique, as used in this paper, and for example, in
[10]. However, the CG method will be presented mainly from a geometrical point of
view to provide the motivation and insight in the workings of the method.

2.2. Conjugate Gradient
We have a system of linear equations, Ax = b, derived from an implicit step of the

N-S equations, together with an initial solution vector x0. This initial vector may be
obtained by an explicit step, or simply may be the flow field from the previous step.

We can write this linear system as the result of minimizing the quadratic function

where the gradient of f is Ax - b. In the CG method, a succession of search directions
pm is employed — how these directions are constructed is of no concern at the
moment — and a parameter αm is computed such that f(xm - αmpm) is minimized
along the pm direction. Upon setting xm+1 equal to xm - αmpm, the new search direc-
tion is then to be found: the construction of the search directions can be directly seen

from Fig. 2.
In two dimensions, the contours f(x)=const form a set of concentric ellipses whose

common center is the minimum of f(x). It can be shown that the residual vectors rm

form an orthogonal system and that the search vectors pm are mutually A-orthogonal.
The CG method has the major advantage that only short recurrences are needed, that
is, the new vector xm depends only on xm-1 and search direction pm. In other words,
storage requirements are low.

The number of iterations of CG needed to achieve a prescribed accuracy is propor-
tional to the square root of the condition number κ of the matrix, which is defined as the
ratio of the highest to the lowest eigenvalue. Note that for second-order elliptic prob-
lems, κ increases by a factor of four when the grid-spacing is halved.

2.3. GMRES
The matrix obtained from the N-S equations is neither symmetric nor positive defi-

nite. If we use the CG method, the term (pm, Apm) is not guaranteed to be positive,
and the search vectors are not mutually orthogonal. It should be remembered that
pm+1 = rm+ αmpm and that the αm are determined such that the second orthogonality

f x() 1
2
---xTAx xTb–=

Figure 1. The CG method: one-dimensional minimization. Let x* denote the
exact (unknown) solution, xm an approximate solution, and ∆xm = xm - x*.
Given any search direction pm, the minimal distance from the line to x* is
found by constructing ∆xm+1 perpendicular to pm. Since the exact solution is
(of course) unknown, we make the residual perpendicular to pm. Regardless
how the new search direction is chosen, the norm of the residual is not
increasing.

x*

∆xm

∆xm+1

pm

xm

xm+1

condition holds, but this is no longer possible for the unsymmetric case. However,
this feature is mandatory to generate a basis of the solution space. Hence, this basis
must be explicitly constructed. The extension of the CG method, termed GMRES
(Generalized Minimized Residual), minimizes the norm of the residual in a subspace
spanned by the set of vectors r0, Ar0, A2r0, ..., Am-1r0, where vector r0 is the initial
residual, and the m-th approximation to the solution is chosen from this space. The
above mentioned subspace, a Krylov space, is made orthogonal by the well-known
Gram-Schmidt procedure, known as an Arnoldi process when applied to a Krylov sub-
space.

When a new vector is added to the space (multiplying by A), it is projected onto all
other basis vectors and made orthogonal with the others. Normalizing it and storing
its norm in entry hm,m-1, a matrix Hm is formed with nonzero entries on and above the
main diagonal as well as in the subdiagonal. Inserting the ansatz for xm into the resid-
ual equation, and after performing some modifications, a linear system of equations
for the unknown coefficients γl

m involving matrix Hm is obtained. Hm is called an
upper Hessenberg matrix. To annihilate the subdiagonal elements, a 2D rotation (Giv-
ens rotation) is performed for each column of Hm until hm,m-1 = 0. A Givens rotation is
a simple 2×2 rotation matrix. An upper triangular matrix Rm remains, which can be
solved by backsubstitution.

3. Preconditioners

In order to reduce the condition number of A, the system is premultiplied by a so-
called preconditioning matrix P that is an approximation to A-1, but is easy to com-
pute. Instead of solving the sparse linear system Ax=b, the equivalent system
(PA)x=Pb is solved. The choice of an effective (less iterations) and an efficient (less
computer time) preconditioner is crucial to the success of GMRES.

For the preconditioning to be effective, P should be a good approximation of A-1, so
that the iterative methods will converge fast. For efficiency, the memory overhead and

Figure 2. The CG method: Search directions. The next search direction pm+1 is
A-orthogonal, or conjugate, to pm, and it is a linear combination of rm and pm.
This determines pm+1. In two dimensions, this second search direction goes
through the midpoint of the ellipse, giving an exact solve at the second stage.
Note that simply setting pm+1 = -rm, the method of steepest descent, would
not result in the most efficient search direction.

xm-1

xm+1
xm

pm+1

pm

rm

the additional cost per iteration should be small.
Any kind of iterative scheme can be used as a preconditioner, for instance, Jacobi or

Gauss-Seidel relaxation, Successive Overrelaxation, Symmetric Successive Overrelax-
ation (SSOR), Red-Black or Line Gauss-Seidel Relaxation, Incomplete Lower-Upper
Factorization (ILU). Thus, the linear solver is a two-part process, with an inner loop of
a simple iterative scheme serving as the preconditioner for an outer loop of GMRES.

3.1. Preconditioners in Parnss
First, we recall that the condition number, and hence the number of sweeps to con-

vergence, of a grid increases dramatically as the grid is made finer. Therefore, we
expect a good strategy is to use multiple grids at different resolutions, the coarser act-
ing as a preconditioner for the finer.

In the following, however, we describe the various preconditioning matrices that
have been constructed and implemented for use with the Parnss code on a fixed grid.
In each case, the preconditioner is made by repeating a simple iteration derived from
a splitting of A:

The various forms of matrix B that have been implemented are based on splitting A
into diagonal, lower-triangular, and upper-triangular parts, D, L, and U, respectively.
They may be written:

•Diagonal: B = D
•Gauss-Seidel: B = D - L
•Successive Overrelaxation: B = D/ω - L
•Symmetric Successive Overrelaxation:B1 = D/ω - L alternating withB2 = D/ω - U
In contrast to the CG method, GMRES does not generate short recurrences, but

needs the full set of basis vectors, thereby incurring a substantial memory overhead.
Second, the computational cost increases linearly with the number of basis vectors.
Since the code is written in ANSI-C, memory is allocated and freed dynamically.
Moreover, only one block at a time is computed per processor, so that only this block
must be stored. In principal, the Krylov basis could be made as large as the available
memory allows, dynamically adding new basis vectors. However, because of the com-
putational overhead and the effects of rounding error in the orthogonalization, the
algorithm should be restarted: we have chosen to do this after 20 iterations.

3.2. Experimental Results
We conclude this section with some measurements of the effectiveness of the vari-

ous preconditioners. Figure 3 shows the fall of the norm of the residual for a sample
calculation against wall-clock time. The block-diagonal preconditioning is a variant of
diagonal, where 5×5 diagonal blocks of the matrix are inverted; red-black precondi-
tioning is a Gauss-Seidel process where the grid points have been ordered in a partic-
ular way. It is clear that the SSOR is the most efficient.

4. Results for NASA-ESA Huygens Space Probe

Parnss was used to perform several testcase computations for the Huygens space

xk 1+ B 1– B A–() xk b+[]←

probe. This space probe is part of the Cassini mission, a joint NASA-ESA project and
will be launched in 1996. After a six-year flight, Cassini will have reached Saturn, and
the Huygens probe will make a landing on Titan, the largest moon. Upon completing
the entry phase, it will descend by parachute (Mach 0.1) to measure the composition
of Titan’s atmosphere (mainly nitrogen). The concern is that sensors (lasers, mass
spectrometer) located on the windward side of the probe may become inoperational if
the local flow field is such that dust particles may be convected onto the optical sur-
faces of these sensors. So far, all computations have been for inviscid flow, but high
cell aspect ratios were already used. In addition to the incompressible case, a Mach 3.1
computation has been performed. Computations were stopped when the residual had
dropped to 5×10-6. The computation for Ma 3.1 is not a realistic case, since the aero-
braking shield was not modeled. For both low and high Mach numbers, the SSOR
performed best.

5. Towards an Efficient Parallel Solution Strategy

In this paper we have briefly described a combined solution strategy for the N-S
equations. Solutions for steady state as well for transient flow can be computed, cov-
ering the range from incompressible to hypersonic flows. The numerical solution
technique is based on a Krylov subspace method. In particular, for very large and stiff
problems the condition number will also be large, and preconditioning is essential.
For these problems, conventional relaxation schemes converge very slowly or may
not converge at all. A large number of preconditioners have been tested, and symmet-
ric SOR has been found to work best. An excellent discussion of preconditioners for
2D test cases is given in [11].

From theoretical models [12] and computational experience [5] it can be concluded
that load balancing for complex geometries and parallel efficiency up to several hun-

Figure 3: Effect of preconditioning. The example computed is for a 24 block
3D grid for the Huygens space probe. The plot shows the log magnitude of
the residual versus computing time within one nonlinear iteration step.

0

-2

-4

-6

-8

-10

-12

-14

-16
0 5 10 15 20

None

Diagonal
Block-Diagonal

SOR
Red-Black

SSOR

lo
g

no
rm

 r
es

id
ua

l

computing time, seconds

dred processors do not pose a problem for the N-S simulations for the strategy out-
lined in this paper.

However, there is a need to investigate the convergence rate of these implicit solu-
tion schemes on serial and parallel architectures. The time-dependent N-S equations
used to obtain the steady state are hyperbolic, that is, there is a finite propagation
speed. A full numerical coupling of all linear equations is therefore unphysical, and
actually reduces the convergence rate for steady state problems, as large scale compu-
tations have shown. The 384-block Huygens space probe that was presented in Sec-
tion 4 can also be modeled using a 6-block grid. For exactly the same problem, a much

Figure 4: Mach distribution for a 6 block Huygens grid with AoA=0, Ma=3.1,
and blocksize 19×61×19.

Figure 5: The same problem as in Fig. 4, but now the solution domain is split
into 384 blocks of size 12×12×12, resulting in a total of 663,552 grid points.
Although block size is small, communication overhead is not important
because of the large amount of computation per grid point.

slower convergence to the steady state has been observed, exhibiting the same trend
as in the 2D testcases [5]. Since the exact numbers have not been firmly established at
the time of this writing, they will not be presented here.

6. REFERENCES

1. J. Häuser, J. Muylaert, H.-G. Paap, M. Spel, and P.R. Eiseman, Grid Generation for
Spaceplanes, 3rd Space Course, University of Stuttgart, Germany, 1995, 66 pp.

2. D. J. Mavriplis and V. Venkatakrishnan, A Unified Multigrid Solver for the Navier-
Stokes Equations on Mixed Element Meshes, AIAA-95-1666.

3. D. A. Kontinos, McRae, Rotated Upwind Algorithms for Solution of the Two- and
Three-Dimensional Euler and Navier-Stokes Equations, AIAA 94-2291

4. J. Häuser, M. Spel. J. Muylaert and R. D. Williams, Parnss: An Efficient Parallel
Navier-Stokes Solver for Complex Geometries, AIAA 94-2263.

5. J. Häuser, J. Muylaert, M. Spel, R. D. Williams and H.-G. Paap, Results for the
Navier-Stokes Solver Parnss on Workstation Clusters and IBM SP1 Using PVM, in
Computational Fluid Dynamics, Eds. S. Wagner et al., Wiley, pp. 432-442.

6. M. J. Bockelie and P.R. Eiseman, A Time Accurate Adaptive Grid Method for the
Numerical Simulation of a Shock-Vortex Interaction, NASA-2998, 1990.

7. P. R. Eiseman, et al., GridPro/az 3000, Users’s Guide and Reference Manual, 111
pp., Program Development Corporation of Scarsdale, NY.

8. D. Whitfield, Newton-Relaxation Schemes for Nonlinear Hyperbolic Systems,
Mississippi State University Preprint MSSU-EIRS-ASE-90-3, 1990.

9. K. J. Vanden, Direct and Iterative Algorithms for the Three-Dimensional Euler-
Equations, Dissertation Thesis, Mississippi State University, December 1992.

10. G. Golub, G., J.M. Ortega, Scientific Computing, Academic Press, 1993.
11. K. Ajmani, W. F. Ng, M. S. Liou, Preconditioned Conjugate-Gradient Methods for

the Navier-Stokes Equations, J. of Comp. Phys., 110 (1994) 68-81.
12. J. Häuser, and R. D. Williams, Strategies for Parallelizing a Navier-Stokes Code on

the Intel Touchstone Machines, Int. J. Num. Meth. Fluids, 15 (1992) 51-58.

Figure 6: The Mach distribution for the 6-block grid with AoA=15, Ma=0.1
and blocksize 19×19×19.

