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We calculate the response for scattering off a particle bound by an isotropic harmonic 
force and damped through hybridization with a phonon bath. An exact expression for 
the scattering response is studied numerically to provide a detailed picture of its 
dependence on wave vector, frequency, temperature and phonon hybridization strength. 

1. Introduction 

A damped harmonic oscillator is often used to mod- 
el the response of a bound particle, or resonant 
system, to an external probe [1, 2J. In most cases, 
the damping mechanism is mimiced by a phenome- 
nological force proportional to the particle's veloci- 
ty, and the strength is termed a friction coefficient. 
This amounts to a separation of the medium force 
into components distinguished by their characteristic 
time scales as in the theory of Brownian motion [3]. 
The difference between the medium and frictional 
forces is attributed to a rapidly varying (random) 
force that averages to zero in time intervals of in- 
terest. In consequence, the random force does not 
enter response functions explicitly. A friction dam- 
ped oscillator is unphysical in that it does not con- 
serve energy, and a Hamiltonian description does 
not exist. 

In two previous papers [4, 5J we calculated the 
scattering response function of more realistic models 
of bound particles. The models have a Hamiltonian 
description and recognize that the target particles 
inhabit a non-passive particulate medium. All par- 
ticle forces are harmonic, so the scattering response 
is obtained exactly. We demonstrated, among other 
things, that the observed response incorporates the 
dynamic properties of the medium in a non-trivial 
manner, generating highly structured response spec- 
tra over extensive ranges of scattering vector and 
sample temperature. The models are based on mass 
defects in harmonic lattices; extensive descriptions 

have been given of a single mass defect (Rubin mod- 
el) and an ordered binary system. 

In this paper we report on the scattering re- 
sponse for a Hamiltonian model that is more akin 
to the friction damped harmonic oscillator. We con- 
sider an oscillator hybridized with a phonon bath, 
using a single parameter hybridization strength in 
place of a friction coefficient. The model is of in- 
terest both as an exactly solvable, non-trivial, many- 
particle system [6J, and also as a plausible model 
for the interpretation of proton dynamics in macro- 
molecules, revealed in neutron scattering, for exam- 
ple. We do not dwell on the basic theory of the 
model or the calculation of the scattering response 
function since this is similar to our previous work, 
as is the method of numerical analysis. We should 
remark that, at least in one dimension, it is possible 
to find a hybridization strength, which is frequency 
dependent, that maps the hybridized oscillator mod- 
el onto the mass defect problem [6J. However, we 
do not admit a frequency dependence of the strength 
and, as already remarked, our model is akin to the 
friction damped oscillator except that we have a 
microscopic prescription for the damping mecha- 
nism. 

2. Model Definition 

Let (2 and P denote the reduced displacement and 
momentum operators for an oscillator of natural 
frequency o) o. The oscillator Hamiltonian is O)o(Q 2 
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+P2)/2. The oscillator is hybridized with a phonon 
bath which contains N modes denumerated by the 
index v. Our model is described in the Hamiltonian, 

jgga =co0(Q2 + p2)/2 

+(1/2)  y 2 2 (co~(q~ + p~) + 2 g~(Q q~ + Ppv)) 
v 

= (coo- ~ g2/cov)(Q2 + p2)/2 
v 

+ (1/2) ~ co~((q~ + g~ Q/coy) 2 + (Pv + g v - P / c o v ) 2 )  " (2.1) 
v 

Here, g~ is the strength of the hybridization, and qv 
and p~ are the phonon displacement and momentum 
operators. The strengths are specified in the follow- 
ing section. 

From the second form of the Hamiltonian it is 
evident that the system is stable provided the hy- 
bridization strength, for a given coo and phonon 
frequency spectrum, satisfies the inequality 

coo > ~, (g2/c%) - (2.2) 
v 

3. Displacement Response S(k, co) 

The response function observed in scattering off a 
particle at the position defined by R is, 

S(k, co) = j (dt/2rc) exp(-icot) 
- c o  

�9 ( e x p ( - i k - R )  exp{ik. R(t)} ). (3.1) 

Here, angular brackets denote a thermal average of 
the enclosed quantity, R(t) is the Heisenberg opera- 
tor formed with the Hamiltonian (2.1) and k and co 
are the changes in the wave vector and frequency of 
the scattered radiation. For an isotropic environ- 
ment the response function is independent of the 
orientation of k, and this fact is incorporated in the 
notation used in the Definition (3.1). Note that the 
displacement operators in the correlation function in 
(3.1) do not commute at different times. For t =0 the 
correlation function is unity, and thus 

dcoS(k, co) = 1. (3.2) 
- c o  

Another useful frequency sum rule is the so-called f- 
sum rule 

• dco. co. S(k, co) =k2/2M, (3.3) 
- o o  

where M is the mass of the oscillator. 

For a harmonic system, such as (2.1), the cor- 
relation function in (3.1) reduces to 

exp{k2(xx(t) -x2)} ,  (3.4) 

with the displacement operator 

x =(1/Mcoo)l/2Q. (3.5) 

The displacement autocorrelation function in 
(3.4) is readily calculated. We find it convenient to 
express the result in the form 

co 

(xx(t))  =( - 1/2~Mcoo) ~ dco G"(co)J(co, t) (3.6) 
0 

where 

J(co, t) = cosh{co(it + 1/2 r)}/sinh(co/2 T), (3.7) 

and T is the temperature. The function G"(co) in (3.6) 
is the imaginary part of 

G(co) = {co - c o o -  Y g /(co - coO} - i, (3.8) 
v 

evaluated with co=co+ie and e-~0. 
In the limit g~ =0, G"(co)= -~6(co-co0) and (3.6) 

reduces to the standard expression for the displace- 
ment correlation function of a harmonic particle. 
Inserting the result in (3.1) and exploiting the iden- 
tity 

exp{ycosh(x)}= ~ In(y)exp(nx ), (3.9) 
n =  - c o  

where I ,  is a Bessel function of order n, shows that 
the response of an undamped oscillator is the sum of 
an infinite number of delta functions that result from 
events in which the radiation frequency is changed 
by a multiple of coo [-4, 5]. The amplitude of an 
event depends on k through the quantity 

exp { - 2 W(k)} I,(y) 

in which 

2 W ( k )  = k 2 < x 2 >  = y  cosh(coo/2 T), (3.10) 

and y =k2/{2Mcoo sinh(coo/2 T)}. 
Damping of the oscillator by the phonon bath 

arises from the imaginary part of the sum in G(co). 
We adopt the following prescription, 

lm~,g2/(co+ie-co~)= -~cg2Z(co)= - F(co), (3.11) 
v 

where Z(co) is a normalized phonon density of states, 

Z(co) =( l /N) ~ 6(co - co~). (3.12) 
v 
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Fig. 1. The model  phonon density of  states Z(co) adopted is dis- 
played together wi th the corresponding A(o~), defined in (3.13). 
Solutions of (4.1) are indicated for ~o=0.921, ~r=l .3 and g2 
=0.2; the maximum gZ =0.348. Energies are measured in units of 
the maximum phonon energy 
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Fig. 2. The imaginary part of G(c~) in (3.8) which is a spectral 
weight or, alternatively, an effective density of states for displace- 
ments is shown for the parameters used in Fig. I, and gZ=0.04 
and 0.12 

In (3.11) we have effectively replaced the strengths g~ 
by an averaged strength g. The prescription (3.11) 
completes the definition of our model of a phonon 
damped oscillator. 

The real part of the sum in (3.8) is denoted by 
A(co). Using the standard dispersion relation we ar- 
rive at the result 

A (co) = P 7 du Z(u)/(co - u), (3.13) 
0 

where P denotes the principal part of the integral. 
The stability condition (2.2) now reads 

COo§ >0. (3.14) 

For a given phonon spectrum and oscillator fre- 
quency (3.14) provides an upper bound on g2. It is 
interesting to observe that if g2 is too large the f 
sum rule is violated. 

4. Basic Features of S(k, co) 

Let us begin by considering properties of the dis- 
placement correlation function (3.6) induced by the 

phonon bath. Solutions of the equation 

co --coo =g2 A (co), (4.1) 

define mode frequencies that essentially determine 
the dynamic properties of the model. The function 
4(co) for a Debye spectrum Z(co)=3co2/co 3 for exam- / d, 

ple, is 

4 ( c o ) = ( - 3 / 2 c o a ) { l + 2 x + x Z l n ( [ 1 - 1 / x ] 2 ) } ,  (4.2) 

where x =o/co d. 
For finite g, there is always a solution of (4.1) 

above the maximum phonon frequency. This fre- 
quency co, defines a true resonant mode since it is 
undamped by the phonon bath. Solutions of (4.1) in 
the range of co in which Z(co) is finite are physically 
significant when they occur in a region in which 
Z(co) is very small, since they give pronounced struc- 
ture in G"(co). 

This point is illustrated in Figs. 1 and 2 which 
shows A(co) for a realistic density of states. The 
parameters, in units of the maximum phonon fre- 
quency, are cov=l.3 and g2__0.04, 0.12 and 0.2, and 
the maximum g2=0.348. The significant peak in 
G"(co) at co =0.2 for g2 =0.2 arises from the lowest of 
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the three solutions of (4.1). Above this frequency 
G"(co) is, more or less, proportional  to 1/Z(co), except 
at the band edge. 

The case with g2 =0.2 is an example where the 
oscillator frequency OOo=0.912 lies within the pho- 
non band. When coo lies above the band edge the 
maximum value of g2 is enhanced, e.g. with co o 
=2.438, cot=3.0 the maximum g2=1.325. For such 
values of g2, G"(m) is much weaker in the band 
although it can be structured. The intensity is shifted 
from the band contribution to the resonance contri- 
bution at co =cot, of course, as we discuss next. 

The resonance contribution to G"(co) is readily 
shown to be 

G"(co) = - ~ 6(0) - coy{ 1 - g2 A,(cor)} ' (4.3) 

where A'(co) is the frequency derivative of A(co). 
Using the f -sum rule (3.3) it follows that the quan- 
tity 

(co/OOo)/{ 1 + (coo - co) A'/A }, (4.4) 

evaluated at co =co~ is a measure of the depletion of 
the band contribution to the displacement corre- 
lation function; if the quantity (4.4) is unity the reso- 
nance contribution exhausts the sum rule, and there 
is no band contribution. In this latter, extreme, case 
the scattering response S(k, co) is the same as that of 
an undamped oscillator of frequency cot, i.e. an in- 
finite series of delta functions. For  intermediate val- 
ues of the parameters, the phonon band contributes 
to the response leading to significant effects in 
S(k, co), as we demonstrate in Sect. 5. 

Assembling the results for the phonon band and 
resonance contribution G"(co) leads to the following 
expression for the displacement correlation function 
that features in S(k, co), namely, 

2Mcoo(XX(t)) =J(e)r,  t)/{1 -g2A'(cor) } 
~orn 

+ S (dco/rc)F(co)J(co, t)/{Eco --coo -gZA(co) "]2 
0 

+ [F(co)~ 2}. (4.5) 

In this expression, F(co) is defined in (3.11) and corn is 
the phonon band cut-off, and 

S(k, co)=exp{-2W(k)}  S (dt/2rc) 
- ~ (4.6) 

�9 exp{ - icot+k2(xx( t ) )} .  

In view of the fact that the displacement cor- 
relation function (4.5) is a sum of resonance mode 
and phonon band contributions, we express S(k, co) 
as a convolution of response functions for each con- 
tribution. The Fourier transform in the resonance 

mode response is readily accomplished with the aid 
of (3.9), and it leads to a response that is the sum of 
delta functions located at multiples of co r. The corre- 
sponding amplitudes are obtained from (3.10) on 
making the replacements co0~co r and M--,M{1 
-g2A'(cor) }. The final result for the scattering re- 
sponse function is 

S(k, co)=exp{-2W~(k)} ~ exp(ncoj2r)I,(yr) 
n= --o(3 

* St(k , co - ncor) , (4.7) 

where St(k, co) is the response generated by the pho- 
non band contribution to (xx(t)).  From (4.7) we 
deduce immediately that the phonon bath induces 
structure in the resonance mode lineshapes. This 
structure is a subject of the next section in which we 
present numerical results for S(k, co), using a fre- 
quency scale in which COrn = 1. 

5. N u m e r i c a l  R e s u l t s  a n d  D i s c u s s i o n  

We have calculated S(k, co) as a function of'co for a 
wide range of k, and two densities of states, namely, 
the Debye approximation and the realistic model, of 
three dimensional lattice vibrations, displayed in 

- 2  -1  0 1 2 3 4 5 6 
CO 

Fig. 3. S(k,  co) is shown as a function of co for k 2 / 2 M = l ,  T = I  
and co~ = 1.3, for a range of values of g2. The base lines are shifted 
upwards  to clarify the presentat ion 
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Figs. 1 and 2. The method of numerical analysis is 
described in detail in [5]. 

The variation of S(k, co) with gZ displayed in 
Fig. 3, for cot =1-3 and fixed wave vector and tem- 
perature, can be understood largely by examining 
the structure in G"(co). In the extreme case g2 =0  we 
have co0=co,, G"(co) is compatible with an Einstein 
density of states, and S(k, co) is the sum of delta 
functions. With regard to Fig. 3, in order to facilitate 
visual presentation of S(k, co) we have convoluted it 
with a gaussian function, and this accounts for the 
finite linewidths for g2 =0. 

Let us now consider the three cases gZ=0.04, 
0.12 and 0.20 since we find that they illustrate the 
three basic forms of the phonon contribution to 
G"(co) shown in Fig. 2. For  both g2 =0.04 and 0.20 
the phonon contribution contains a single, well de- 
fined peak, centred at about 0.9 and 0.2, respectively, 
whereas g2=0.12 is an intermediate case with two 
weak, but well separated, peaks. Well defined peaks 
in the phonon contribution to G'(co) can generate 
satellite structure in the resonance contributions to 
S(k, co), as is evident from (4.7). Thus, for g2=0.04 
there are principal satellites at frequencies = (m co,. 
_+0.9), where m is an integer. The satellite frequency 
increment decreases with increasing g2, and for g2 
=0.20 the principal satellites are located at (mco~ 

_+0.2). As g2 is allowed to approach its maximum 
value, the satellite frequency increment approaches 
zero, and the satellite structure eventually coalesces 
with the resonance contributions yielding broad 
peaks devoid of the fine structure evident with small 
g2. 

Results for S(k, co) based on a Debye phonon 
density of states are quite similar to those displayed 
in Fig. 3, and the evolution of the satellite structure 
with increasing g2 is certainly much the same. Small 
differences exist at intermediate g2 because the pho- 
non contribution to G"(co) for a Debye model pos- 
sesses just one peak for all values of the coupling 
strength, and no singular features. 

Figures 4 and 5 show, for co,=l.3 and ga=0.3, 
the variation of S(k, co) with wave vector and tem- 
perature. It is interesting to observe in Fig. 4 that 
the amplitude of the fundamental contribution to 
S(k, co) is more or less independent of k 2. The signifi- 
cant changes are the decrease in the amplitude of 
the diffuse background with decreasing k 2, which is 
required by the f-sum rule, and the increase in the 
elastic amplitude. The temperature variation of 
S(k, co) illustrated in Fig. 5 is more pronounced, and 
the first overtone emerges as a distinct feature at the 
lowest temperature. Figure 6 gives the variation of 
S(k,o)) with k 2 for a g2 that is smaller (g2=0.20) 
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Fig. 4. S(k,~o) for or  =1.3 , g2 =0.3 and  T = I  is shown for various 
k2/2M 
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- 0 " 7 5  
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Fig. 5. S(k,~) for ~r=1.3, g2=0.3 and k2/2M=] is shown for 
various temperatures 
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0"5 = k2/2M 
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Fig. 6. S(k, co) for o9r=1.3 , g2=0.2 and T = I  is shown for various 
kZ/2 M 
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Fig. 7. S(k, co) for 0)~=3.0, g2=1.3 and T = I  is shown for two 
values of the recoil energy k2/2M 

G31= 
, 1.3 

1.1 

-2  -1 0 1 2 3 4 5 
co 

Fig. 8. The g2 variation of S(k, co) for fixed co o is illustrated for co o 
=0.7, k2/2M=T=I. The base lines are shifted for clarity. The 
values of co~ are: g2=0.107, cor=l.1; g2=0.200, ~or=1.2; g2 
=0.313, ~o =1.3 

than  the value used in Fig. 4. I t  serves to i l lust ra te  
the deg rada t i on  of fine s t ructure  with increas ing k 2, 
for in this case the  response  with  k2 /2M=l  is a 
gauss ian  cent red  at  the recoil  energy k2/2M, to a 
g o o d  approx ima t ion .  

P h o n o n  induced  s t ructure  in S(k, co) becomes  rel- 
a t ively  weaker  wi th  increas ing co r. This  feature of the 
sca t tered  response,  and  the s t rong wave vector  de- 
pendence  of  m o d e  ampl i tudes ,  are  i l lus t ra ted  in 
Fig. 7, which conta ins  S(k, co) for cot=3.0,  g2=1 .3  
and  two values of k2/2M. 

Final ly ,  we give an example  of the va r ia t ion  in 
S(k, co) with g2 for fixed coo (and k and  T) whereas  in 
previous  examples  we have kep t  cot fixed. F igure  8 
shows S(k, co) for oo0=0.7, and  k 2 / 2 M = l  and  T = I ,  
for three values  of  g2. F o r  the smal les t  value  of g2 
the response  conta ins  weak  s t ructure  on  a gauss ian  
b a c k g r o u n d  cen t red  at  the recoil  energy. The  reso- 
nance  frequency for this case cor=l .1 ,  while for the 
largest  gZ, cot = 1.3 is well  s epa ra t ed  f rom the top  of 
the p h o n o n  b a n d  and  the fundamenta l  m o d e  in 
S(k, co) is distinct.  
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