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The presence of viscosity normally has a stabilizing effect on the flow of
a fluid. However, experiments show that the flow of a fluid in which viscos-
ity decreases as temperature increases tends to form shear layers, narrow
regions in which the velocity of the fluid changes sharply. In general, adia-
batic shear layers are observed not only in fluids but also in thermo-plastic
materials subject to shear at a high-strain rate and in combustion and
there is widespread interest in modeling their formation. In this paper, we
investigate a well-known model representing a basic system of conservation
laws for a one-dimensional flow with temperature-dependent viscosity us-
ing a combination of analytical and numerical tools. We present results to
substantiate the claim that the formation of shear layers can only occur in
solutions of the model when the viscosity decreases sufficiently quickly as
temperature increases and we further analyze the structure and stability

properties of the layers.
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1. INTRODUCTION

The broad goal of this paper is to explore the role of dissipation in the large-
time behavior of systems of nonlinear hyperbolic conservation laws. In general, the
nonlinear character of the conservation laws induces a destabilizing mechanism,
while the presence of viscosity and thermal diffusion has the opposite effect. We
examine this delicate competition in the context of one-dimensional fluid flow within
the framework of thermomechanics.

It is generally conjectured that heat dissipation alone cannot prevent the forma-
tion of shocks, see Dafermos and Hsiao [11]. An important question is whether
or not the combined dissipative effect of viscosity and thermal diffusion can coun-
terbalance the destabilizing influence of nonlinearity and induce the existence of
globally smooth solutions, see Dafermos and Hsiao [9] and Tzarvaras [25]. Most of
the existing analysis in the literature is restricted to the case where the viscosity
does not vary with temperature. It is possible to perform some rigorous analysis in
this case, but physically this is a rather crude assumption.

To elucidate the effects of the dependence of the viscosity on temperature and
in particular to determine if the dependence of viscosity upon temperature can
destabilize the flow of a fluid, Dafermos and Hsiao ([10]) proposed a test problem
that models an adiabatic rectilinear shearing flow in an incompressible Newtonian
viscous fluid between parallel plates with one plate moving at a constant distance
from the other plate, see Fig. 1. We choose Cartesian coordinates so that the z-axis
is perpendicular to the plates located at z = 0 and z = 1. We assume that the plate
at = 0 is at rest and the plate at z = 1 moves with constant velocity V in a direc-
tion orthogonal to x and that between the plates, the flow is parallel to the plates
and uniform in the directions orthogonal to z. The Lagrangian description of the
balance laws of mass, momentum and energy with reference density po = 1 yields
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uniform shear flow 0

FIG. 1. The one dimensional model of shear flow.

ug(z,t) — v (z,t)
ve(x,t) — o4 (z,t)

0, 0<z<1,0<t,
0, 0<z<1,0<t,
0

(e(z,t) + %v(m,t)z)t — (o(z, t)v(z, 1)z + ¢ (x,t) , O0<z<1,0<t, (1)

where u denotes the deformation gradient, v the velocity, o the shear stress, e the
internal energy and ¢ the heat flux. Under the assumption of an adiabatic shear-
ing flow in an incompressible Newtonian viscous fluid and normalizing so that the
density and the specific heat are one, the conservation laws from (0) reduce to

vy =0, and e = ov,. (2)

Internal energy and viscosity are determined by temperature § via known con-
stitutive relations, e = é(6) and p = [i(#). In typical fluids, é(0) is increasing and
convex, the function fi(d) is typically increasing in gases and decreasing in liquids.
It is convenient to eliminate § between e = é() and u = j1(6) and consider viscosity
as a known function of the internal energy. With this in mind, for simplicity we
write 6 for the internal energy and refer to it as the temperature.

For a constitutive relation, we assume that the fluid is linearly viscous, that is,
the shear stress is related to the temperature and velocity gradient as follows

o = p(f)v,. 3)

The same model has been proposed by Tzavaras ([23]) to study the destabilizing
effect of thermal softening in solids during plastic shearing. For non-Newtonian
fluids the constitutive relation reads

o = u()|ve v, n>1. (4)

This constitutive law is appropriate for a solid in a plastic region exhibiting thermal
softening and strain rate sensitivity (measured by the parameter n) but no strain
hardening. More general models that include strain-rate dependent materials have
been studied by Tzavaras ([24, 25]). In this paper we restrict our attention to
Newtonian fluids, i.e., n = 1 in (4), but note that our qualitative results generalize
ton > 1.
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To complete the model, we impose the boundary conditions
v(0,t) =0 and w(l,t) =V, t>0,

where V' > 0 is constant since the fluid is subject to a steady shear. We also impose
initial conditions v(x,0) = vo(z) and 6(x,0) = fy(z). Putting this all together, the
model problem is

vi(z,t) = ox(z,t), 0<z<1,0<t,
Oi(x,t) = o(z,t)v,(z,t), 0<z<1,0<t,
v(0,t) =0,v(1,t) =V, 0<t,
v(z,0) = vo(z), 6(z,0) = bp(z), O0<z <1, (5)

where o(z,t) = u(6(x,t))v, (x,t)
A short inspection yields two important facts about (4). First, the boundary
conditions imply that there is a conserved quantity for the solutions of (4), namely

o(s,t

V = u(1) — v(0) :/0 va(5,1) ds :/0 mds. (6)

It turns out that this conserved quantity plays a critical role in the large-time
behavior of the solutions.

Second, when vg(z) = Vz and 6o(z) = a, where a > 0 constant, then the solution
to (4) is the uniform shear flow

v(z,t) =V, 6(z,t) = h(t),

where h(t) is determined by

h(t) dS
— =V,
/a p(s)

assuming ;' is integrable, see Fig. 1.1. In other words, the flow keeps the uniform
shear profile if it begins with a uniform profile. Much of the analysis of (4) in the
literature concentrates on understanding the stability of the uniform shear flow,
what happens when the initial data vo(z) is close to vo(z) = Va for V = 1 and 6y
is close to a positive constant.

As the material is being sheared, energy is pumped into the system. Since the
flow is adiabatic, temperature will keep rising and tend to infinity with time. The
distribution of temperature can either go to infinity uniformly in space or it could lo-
calize. Note that in the uniform shear flow, the temperature grows with ¢ uniformly
in z. If the temperature tends to infinity in a localized region in z, then a shear
layer can develop in the same region. Shear layers, or bands, are narrow regions
in which the velocity of the fluid changes sharply or narrow layers of concentrated
shearing deformation observed during the plastic shearing of materials.

Various mechanisms and associated continuum thermomechanics models have
been proposed for the explanation of shear layers and there is an extensive literature
on the formation of shear layers, see for example Bai and Dodd [1], Batra [2, 3],
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Bayliss, et all [5], Clifton, et al [8], DiLellio and Olmstead [12, 13], Edwards and
French [15], Maddocks and Malek-Madani [20], Needleman [21], Wright [27, 28],
and Wright and Walter [29, 30]. For numerical computations of shear layers in
various models, we refer to Batra and Ko [4], Drew and Flaherty [14], French and
Garcia [19], French [18], and Walter [26].

Many of these references study (4) or closely related models. The motivation for
studying this simple model is to obtain a better understanding of the phenomenon
of localization of the temperature and the formation of shear layers. Moreover, the
conservation laws that define (4) lie at the heart of any more sophisticated models
describing shear layer phenomena. The main question we address in this paper
is whether or not this simplified model is still sufficiently complex as to allow the
formation of shear layers.

Detailed mathematical analyses of (4) have been carried out by Dafermos and
Hsiao ([10]), Tzavaras ([23]), and Bertsch, Peletier, and Verduyn Lunel ([6]). The
analysis shows that if u(6) tends monotonically to a positive constant as § — oo
and either u? is concave or p is convex, then for all smooth initial data, there is a
unique solution of (4) that converges to the uniform shear flow as t — co. In other
words, the uniform shear flow is a stable solution attracting all smooth solutions.
The analysis also shows that the situation is more delicate if the viscosity tends to
zero as temperature increases, i.e. u — 0 as 8 — oco. In this case, the existence
of solutions and the stability of the uniform shearing flow depend on the rate of
decrease of p with 6. In particular, Dafermos and Hsiao and Bertsch, et al consider
the test problem (4) when

@) =6% a>0. (7)
The parameter a controls the rate of decrease of the viscosity as the temperature
increases. The results can be summarized as
THEOREM 1.1.

1. If0 < a < 1, then (4) has a unique solution for all time that converges
asymptotically to the uniform shear flow as t — oo. In particular,

vp(2,t) =V + O (t—<1—a>/<1+a>)

O(x,t) = ((1+ a)Vzt)l/(l-i-a) (1 L0 (tf(lfoz)/(H»a))) ®)

2. Ifa =1, then (4) has a unique solution for all time and the gradient of
the velocity converges to a steady-state function determined by the initial data while
the temperature grows like O(tl/Q). In particular, there is a positive function 6*
determined by the initial data such that

lim v, (2,1) = ~=
A et = 5
lim ¢~ '/260(z,t) = 6*(2)

=5 (2 +o0e) ©)

o(x,t) =
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3.  Ifa>1 and the initial data are close to the uniform shear flow, then there is
a unique solution that moves away from the uniform shear flow and might blow-up
in finite time.

Since shear bands do not form in (4) when « < 1, we focus our attention on the
case @ > 1. Aside from the local existence of a unique solution that moves away
from the uniform shear flow, not much is known in the case @ > 1. In particular,
it is an open problem whether there exist globally defined smooth solutions. Since
pure analysis appears to be extremely delicate, we study this problem using a
combination of analytical and numerical methods.

We illustrate the possible behavior in the stable cases @ = .5 and a = 1 with a
couple of numerical solutions. In both cases, we form initial data for the solutions
by perturbing the uniform shear slightly by a small “bump” centered at x = .7.
This initial data corresponds to introducing a small amplitude, wide shear layer in
v. See Fig. 2. In Fig. 3, we plot a numerical solution for a = .5. The stability

157 151 .
1.0 /\ _Lof < s
~ >
>
‘ ‘ 0.0 : :
0.0 0.5 1.0 0.0 0.5 10
X X

FIG. 2. Plots of the initial data for v, and v used for the computation shown in Fig. 3.

of the uniform shear is evident, though note that € is not constrained to remain
uniform in space. In general, it is difficult to obtain accurate numerical solutions
of (4) and we discuss details of our computational method below. As a partial
validation of our numerical technique, we verify the estimates on v, and 6 in (7).
In Fig. 4, we plot (maximum of v, — V)t'/3 and (maximum of §)t=2/3 versus time
computed from the numerical solution shown in Fig. 3. These plots suggest that
the estimates in (7) are indeed precise. Using a least squares line fit, we find that
maximum of v, — V decreases like t~33% with a correlation in excess of .9999 and
the maximum of # increases like +%% with a correlation in excess of .99999. The
theoretical values for the rates are —1/3 and 2/3 respectively.

When a = 1, the slight perturbation to the shear profile remains fixed as time
passes, see Fig. 5. To emphasize the degree to which v, remains fixed, we plot the
initial and final profiles in Fig. 6. The perturbation initially present in 6 grows, see
Fig. 6. Thus there is some degree of localization and while the uniform shear flow
does not attract solutions, there is a stable attracting profile close to the uniform
shear flow (but no smoothing of the solution).
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FIG. 3.

Plots of the evolution of v, versus time and 6 at t &~ 2500000 with a = .5. Initially,

vy and 0 have the value 1 perturbed by a smooth bump of height .2 and width .2 centered at
z=.7.
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FIG. 4. Plots of (maximum of v, —V)#1/3 and (maximum of 8)t~2/3 versus time computed
from the numerical solution shown in Fig. 3
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FIG. 5. Plot of the evolution of v, and v versus x when o = 1. The initial data is shown
in Fig. 2.

In both cases a = .5 and a = 1, other smooth perturbations in the initial data
yield the same qualitative behavior. The only significant difference is that the time
scale for v to converge to a steady-state is altered.

The behavior of numerical solutions for @ > 1 is much different than in the
stable case of & < 1. In Fig. 7, we show the evolution of a numerical solution for
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FIG. 6. Plots of v, versus x at ¢t = 0 and ¢ &~ 130000 and 6 at t &~ 130000 with a = 1. The
plots of v, at the two times are indistinguishable.

a = 2 starting with the same slight perturbation of the uniform shear flow shown
in Fig. 2. A sharp shear layer in the flow is clearly developing. In Fig. 8, we show

10

o

=
o

FI1G. 7. Plots of the evolution of v, versus time and the evolution of v versus time with
a = 2. The initial data is shown in Fig. 2.

the evolution of # and a plot of the maximum value of v, in x versus ¢t. The plot
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FIG. 8.  Plots of the evolution of # versus time and maxg vz (-, z) versus time corresponding

to the solution shown in Fig. 7. The vertical axis of the plot on the right is logarithmic.

of the maximum of v, versus ¢ suggests that the peak height of v, grows at an
exponential rate with ¢ after an initial transient period passes. This corresponds to
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the shear layer approaching a discontinuous profile at ¢t = oco. The temperature 6
is growing uniformly in = but grows much faster at the peak.

In this paper, we investigate (4) under the assumption (7) with a > 1 using a
combination of numerical and analytical tools. Our results suggest that generic
solutions of (4) that begin as smooth perturbations of the uniform shear flow exist
for all time but form shear layers that become arbitrarily sharp as time passes.
While the formation of layers is unstable behavior, the layers have a kind of struc-
tural stability in the sense that data representing nearby perturbations of the same
function produce shear layers in the same location and of the same shape and size.
We propose a model for the layers which fits the observed behavior very well and
use the model to explain some aspects of the behavior of the solutions.

The results shown in Fig. 7 and 8 point to the numerical and analytical difficulties
encountered in a study of (4). Particular problems are the multi-scale nature of
sharp shear layers, the long-time transient to the formation of shear layers, and the
apparent loss of regularity, or “blow-up”, in the solutions at infinity. We counter
these difficulties by first introducing new unknowns and a time-variable, which has
the effect of changing (4) into a system of reaction-diffusion equations where the
interesting behavior occurs on a more reasonable time scale and the regularity of the
solutions is better understood. We then construct a numerical method with special
stability properties and use a posteriori error estimates to adaptively control the
error by mesh refinement.

In Section 2, we use an equivalent formulation of the original problem (4) using
the shear stress and the temperature as basic variables. This leads to a system of
reaction-diffusion equations which is more amenable to mathematical and numer-
ical analysis. In Section 3, we present a description of the adaptive finite element
method we use to compute solutions, giving some details of special stability prop-
erties built into the method. We also justify the use of adaptive mesh refinement
and describe the adaptive error control briefly. With the tools developed in these
two sections, we are then in a position to be able to attack the problem. We begin
in Section 4 by computing a model function that satisfies the differential equation
to within a very small residual by an iterative process in which we successively
correct the residuals to obtain increasingly accurate approximate solutions. Using
numerics, we show that the model function is very close to being a true solution.
We also present evidence that a solution that begins as an arbitrary smooth per-
turbation to the shear flow converges to the model function in the limit of large
time. This sets up the theme of Section 5, in which we investigate the convergence
of solutions to the model function. In particular, we consider a systematic sequence
of initial data and use least squares line fitting to compare each solution obtained
to the corresponding model solution. The evidence suggests that solutions that
begin as smooth perturbations of the uniform shear flow converge to the model
function. Then in Section 6, we widen the investigation of numerical solutions to
consider more exotic initial data and also changes to the model in the form of vary-
ing a and adding a diffusion term to the original equations. We present evidence
that suggests that the phenomena we observe in previous sections is robust with
respect to altering the model and also uncover some interesting and unexplained
new behavior. Finally in Section 7, we summarize our results.
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2. A REFORMULATION OF THE PROBLEM

The first step in the analysis of (4) is to reformulate the problem in order to
make sophisticated analytically and numerically methods available. We describe
and motivate the reformulation in this section.

The reformulation has two steps. First we replace (4) for the velocity v and
temperature 6 by an equivalent system of reaction-diffusion equations for the shear
o and the temperature §. There are two reasons. First, the results in Fig. 2 suggest
that v, blows up at infinity when a > 1. We can expect such loss of regularity
to have a strongly negative effect on the approximation properties of a numerical
scheme. Dealing with this negative effect is complicated by the fact that it is
indirect unless we explicitly set out to approximate the derivatives of the solution.
In contrast using the shear ¢ = §7“v, means that we approximate v, directly.
This has the consequence that the criteria we use to adaptively refine the mesh
automatically adds mesh points in regions where v, becomes large. The second
reason for changing the problem into a reaction-diffusion system is that both the
theories for analysis and numerical approximation of reaction-diffusion systems are
well developed, giving many useful tools. In particular, we use the ideas of invariant
regions and comparison principles (see Chueh, et al [7] and Smoller [22]) and the
theory of a posteriori error estimation and adaptive error control for finite element
methods (see Estep, Larson, and Williams [16]).

Differentiating o = §~%v, and substituting into the equation for v in (4) yields
a system of degenerate reaction-diffusion equations

o — 0%, = —ab*" e 0<z<1,0<t,
6, =0°0%, 0<z<1,0<t, (10)

with boundary conditions and initial data given by

In the second step of the reformulation of (4), we attempt to account for the
natural increase in temperature due to the assumption of an adiabatic process and
to the long time scales observed in the computed solutions. To find the natural
time scale in the system, we first neglect the variation in space and consider the
resulting system of ordinary differential equations

o = —af* o3,
0; = 6°0>. (12)
Separating variables, we find that o;/0 = —a#b;/0 or o = ¢0~*. Substituting this
into the equation for § and solving, we obtain

0(t) = (a+ 1))/ and  o(t) = é((a + 1))~/ (O+),
This suggests to rescale the stress and the temperature as follows

S(a,t) = (t+ 1)/ (), (a,t) = (t+ 1) VOG(h).  (13)
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In addition, we change to a logarithmic time scale by setting 7 = log(t + 1). With
r(-,7) =7(,e"—1) and s(-,7) = 3(-,e” — 1), the functions r and s solve the problem

5, —poer/0ta)g @ s(1—(a+1)r*'s?), 0<z<1,0<T,
1+«
1
ry = —1+ar(1 —(a+Dr*71s?), 0<z<1,0<7. (14)

The corresponding boundary and initial data become

$.(0,7) =s,(1,7) =0, 0<T,
s(xz,0) = so(x), 7(x,0) =ro(z), 0<z<1. (15)

Note that so(z) = og(z) and rq(z) = o(x).

To see that the variables r and s are natural for this problem when a < 1, we
use the concept of invariant regions. An invariant region for a system of differential
equations is a region in phase space with the property that a solution that begins
with data inside the region remains inside for all time. The existence of an compact
invariant region for a system of reaction-diffusion equations has strong consequences
such as global existence and smoothness of solutions. See Smoller [22] for a detailed
discussion.

In general, it can be difficult to find an invariant region for a system of equations.
However it is often easier to find a special kind of invariant region called an invariant
rectangle, which is an invariant region consisting of a generalized rectangle in phase
space with sides parallel to the coordinate planes. There is a simple geometric
condition that guarantees that a rectangle is invariant for a system of the form (13)
which is that the reaction term points inwards on each face of the rectangle. In
fact, a common way of demonstrating the existence of a compact invariant region
for a given system is to find new variables in which the corresponding problem has
an invariant rectangle.

We plot the phase fields for (13) in the cases a = .5, a =1, and a = 2 in Fig. 9.
We can find many invariant rectangles in the case a = .5 and many invariant
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FIG. 9. Plots of the phase fields for (13) in the cases a = .5, a = 1, and a = 2. Zero level
contours are plotted in green and boundaries of invariant regions are plotted in red.

“strips” when o = 1.
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On the other hand, there is no apparent invariant region bounded away from
the coordinate axes when « = 2. In fact, the numerical evidence for the formation
of arbitrarily sharp shear layers when a > 1 suggests that there cannot be an
invariant region for the solution when a > 1. In Fig. 10, we show the evolution
of s and r corresponding to the computations shown in Figs. 7 and 8 for ¢ and 6.
The formation of a shear layer corresponds to blow-up in r in the form of a sharp,

FIG. 10. Plots of the evolution of s and r versus time corresponding to the computations
shown in Fig. 7.

highly localized peak that grows with 7.
We can devise a partial explanation of the observed behavior in r and s after

realizing there is a conserved integral quantity involving r and s. Indeed, (6) implies
that

/01 s(z)r* (-, x)dr = /01 o(-,2)0%(-,z) dx = /O1 ve (-, x) dz = V. (16)

If s were independent of the spatial variable, as in the ordinary differential equation
model, the conserved quantity would imply that a sharp peak in r must become
more localized as the peak grows in height while away from the peak,  would have
to tend to zero. We plot r at 7 &~ 14 in Fig. 11,

207 117706
™ :’:
z 20t Z 117703
117700 : '
0.0 0.5 1.0 0.0 0.5 1.0
X X

FIG. 11. Plots r and s at 7 & 14 corresponding to the computation shown in Fig. 10.

However though nearly flat, s in fact is not constant in z, see Fig. 11. In re-
gions where r becomes small, the diffusion in the equation for s becomes large and
consequently s is relatively constant in z. However in a narrow region near the
peak of r, the diffusion in the equation for s is extremely close to zero allowing
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for an extreme degree of localization in the spatial profile of s. Correspondingly,
the effect of the growth of a narrow peak in r on the conserved quantity is partly
compensated by the behavior in s. This small lack of uniformity and smoothness in
the space behavior of s when a > 1 turns out to be crucial to the observed behavior
of r and s as well as the crux in the analysis of the problem.

3. THE NUMERICAL METHOD

There are several particular concerns when constructing a numerical method for
(13) in view of the formation of shear layers. First there is an issue of accuracy
arising from the extreme multi-scale behavior associated with sharp shear layers.
Second, the formation of shear layers takes place after a significantly long transient
time. Third, the formation of shear layers is associated with blow-up in the solutions
at infinity. The goal can be summarized as creating a numerical method that
maintains accuracy during the onset of blow-up while avoiding the introduction of
artificial, or numerical, instabilities.

We employ a finite element method in which the error is controlled via adaptive
mesh refinement. The refinement is controlled by means of an a posteriori error
estimate in which the error is measured in terms of properties of the numerical
solution. This control avoids strong assumptions or knowledge about the regularity
of the solution that cannot be verified in this problem. Since adaptive methods are
relatively complicated to implement, we motivate the use for computing solutions
of (13) using an experiment. We compute numerical solutions of (13) with the
initial data used in the computation shown in Fig. 10 using fixed meshes with
m = 32, 64, ..., up to 16384 elements and one solution using the adaptive strategy
(described in detail below). In Fig. 12, we plot the peak height of 7 measured from
the numerical approximation of r versus 7 for each computation. When a fixed
mesh is used, the peak height of r invariably stops growing after the “tip” of the
peak becomes narrower than the mesh spacing, hence we find that the maximum
peak height depends on h, which can be seen clearly in the plot. On the other
hand, the peak height of f measured from the adaptive computation indicates an
unbounded exponential growth rate in 7. We believe the adaptive computation is
much more accurate than any of the computations on the fixed mesh, while only
8192 elements are used at the end of the adaptive computation shown in Fig. 12.

However using adaptive meshing to solve a problem exhibiting “blow-up” raises
an issue of numerical stability. In effect, mesh refinement can put “energy” into the
system and thus be a source of artificial “blow-up”. This happens for example if
the numerical method has some instability that affects the error estimator which in
turn calls for mesh refinement that can further drive the instability. To avoid this,
we construct a finite element method that has several special stability properties.
For one thing, the method preserves a discrete version of the conserved quantity
(16). As we have seen, the conserved quantity plays an essential role in determining
the blow-up profile. It also provides a measure of the accuracy of the numerical
solution over time. Another stability property of the finite element method is
that for a general class of reaction-diffusion systems, it exactly preserves invariant
rectangles for all sufficiently small time steps. Moreover, the adaptive error control
we employ guarantees that the numerical method approximately preserves invariant
regions for a larger class of reaction-diffusion systems. We give details of these
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Maximum of r(x,t)

FIG. 12. Plot of the peak height of r versus 7 for a series of fixed mesh computations
using m = 32, 64, ..., 16000 nodes and one adaptive mesh computation denoted by the solid line
starting with the initial data used in the computation shown in Fig. 10. The adaptive computation
is using 8192 elements at 7 = 14.

properties below. For now, we note that the plot in Fig. 12 suggests that at any
fixed T the peak heights of r computed on the uniform meshes converge to the
peak height obtained with the adaptive computation as the number of elements
increases. Moreover we obtain virtually indistinguishable plots of the peak height
of r from adaptive computations corresponding to all error tolerances smaller than
a critical value (which is relatively large).

The finite element method is a variation of the space-time discontinuous Galerkin
(dG) finite element method. We describe the method and some results briefly and
refer to Estep, Larson, and Williams [16] and Estep, Verduyn Lunel, and Williams
[17] for more details on the method and the a posteriori error analysis.

We partition [0,00) as 0 = 79 < 71 < T2 < ... < T, < ..., denoting each tau
interval by I, = (7,—1,7.) and tau step by k, = 7, — Thn—1. To each interval
I,, we associate a partition 7, of (0,1) described by nodes z,0 = 0 < x,1 <
Ty mn+1 = 1 with mesh sizes hy; = xp,; — Tp—1. Note that mesh changes are
allowed across tau nodes.

The approximation is a discontinuous constant polynomial in tau and a continu-
ous piecewise linear polynomial in space on each space-tau “slab” S, = (0,1) X I,,.
In space, we let V,, € H'(0,1) x H'(0,1) denote the space of piecewise linear con-
tinuous vector-valued functions v(z) = (v1,v2) " defined on 7,. Then on each slab,
we define

Wy = {w(z,7) : w(z,m) = v"(2), v" € Va, (2,7) € Sn}-

Finally, we let WW° denote the space of functions defined on the space-tau domain
(0,1) x R such that v|s, € W2 for n > 1. Note that functions in W are generally
discontinuous across the discrete tau levels and we denote the jump across 7,, by
[w], = w" —w" L.

In order to construct a method that preserves the integral quantity in a discrete
sense, we change variables to replace r by # = r*. All of our results are presented
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in terms of the original . The problem (13) is changed to

s, — f*le‘r/(lJroz)Samc —

s(1—(a+1)rle7V/2s?) o<z <1,0<T,
+ «
(6%

1+a

A

Tr =

12(1 —(a+ l)f(a—l)/aé?), 0<z<1,0<7(17)

with boundary and initial data

s(x,0) = so(x), 7(x,0) =ro(x)*, 0<z<1. (18)

To simplify the notation, we let u = (u;,us) = (s,7) T and write the variational
formulation of (16) as find u € L2(H'(0,1) x H'(0,1)) such that

[ wrydr+ [ 0@ dr = [0

forallv € L2(H'(0,1)x H*(0,1)) with u(-,0) = u® = (s, 7) ", where L2(H*(0,1)x
H'(0,1)) denotes functions that are L? in 7 and H' in z, (, ) denotes the Ly(0,1)
inner product with corresponding norm || ||, and

eT/(1+a),~1 (2 _ qple D/, 2
D(u,r):< 0 0>a flu) = 1(“23‘ 2(a1)/a13)

_UQ(H_a — aus uj
Note we are simply assuming that u lies in the indicated space of course. The
discontinuous Galerkin method reads: compute U € W° such that for n > 1,

/(Ur,v)d7-+/ (Um,(D(U,T)v)m)dT+([U]n,fu):/ (F(U),0) dr

I, I, I,

for all v € V,, and U(+,0) = U° ~ u° is a suitable approximation of the initial data.

As can be seen, the discontinuous Galerkin method is an implicit method in
tau requiring the solution of a system of nonlinear equations on each tau interval.
However, we are computing solutions of (13) that are not very smooth and therefore
the tau steps have to be kept small for the sake of accuracy, negating any possible
gain in efficiency from using large tau steps in a nonlinear discretization. Thus, we
modify the standard discontinuous Galerkin method to construct a semi-implicit
method. The modifications are obtained by introducing an extrapolation operator
and numeric quadrature in the variational formulation of (13).

To make the discretization semi-implicit, we use the extrapolation operator P
defined on U € WO by PU|;, = P,U""! for n > 1, where P,, denotes an interpola-
tion operator into V. (To maintain smooth profiles near the “tip” of the peak in
r, we define P, using local averaging.) We also write f as f(u) = fe(u)u + fi(u)u
for diagonal matrices

0 0 _a _ g le=D/a, 2
fe(u) = < (a—1)/a 2) and  fi(u) = ( Tha — 2 up 07}

0 —155 tauy uy 0 0



16 ESTEP, VERDUYN LUNEL, AND WILLIAMS

The semi-implicit method is found by computing U € W0 satisfying

/ (U, 0)dr + / (U, (D(PU, 7)0),) dr + ([U]n, 0) — / (i(PUYU, v) dr

I, I, I,

- /1 (f.(PU)PU, v) dr,
for all v € V,,. As the final step in the discretization, we use quadrature to evaluate
some of the integrals in this equation. Since we expect first order convergence in 7
and second order in z, we use the rectangle rule to evaluate the integrals in 7 with
the right-hand endpoint of I,, and the trapezoidal, or lumped mass, quadrature rule
to evaluate the last three space integrals. We compute the space integral for the
diffusion term exactly. Noting that U, = 0, we get that U™ € V,, satisfies

(U2, (D(PU Y, 7)0) ) e + (U™, 0) = { fi( Pa U DU, 0)ky,
= (U 0) + (fe(P U PU o)k, (19)

for all v € V,, where {, ) denotes the lumped mass L? inner product on functions
in V,,. Equation (18) yields a linear tridiagonal system that we solve with a direct
method.

Combining the dG method with the rectangle rule to compute integrals in time
and the lumped mass quadrature rule to evaluate integrals in space yields a method
with strong stability properties. In particular when applied to a system of non-
singular reaction-diffusion equations with constant diffusion in which the solution
is converging to a steady-state, the approximation converges to the same steady-
state. In general for such systems, the method exactly preserves any invariant
rectangles that exist for the continuous system under a CFL-like condition on the
time steps.

The choice of tau steps and space meshes is based on an a posteriori estimate of
the error of U. We refer to Estep, Larson, and Williams [16] for details of the a
posteriori error analysis and its use for computational error estimation and adaptive
mesh refinement. The quality of the discretization is measured locally in terms of
the residual R, which is obtained by substituting U into the (weak form of the)
differential equation. The residual measures show how well the numerical solution
satisfies the differential equation at each point. The true solution has residual equal
to zero, of course. The error e of U is related to the residual of U using a variational
analysis that involves the dual problem to the original problem (13). The estimate
takes the form

e 7l < S(r) max [[R(s)| (20)
for 7 > 0. S(r) is called the stability factor and reflects the stability of the solution
up to 7. The stability factor plays the role of a condition number of a matrix in
the solution of a linear system. To obtain an error bound, we can bound S(r)
using properties such as well-posedness. Typically, such bounds grow exponen-
tially in tau. In most problems in practice, S(7) is estimated computationally by
solving the dual problem numerically because long tau exponential growth is not
observed. However, in the case of (13) the computed stability factor grows at a
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steady slow exponential rate. In this situation, it is reasonable to control the error
by equidistributing the local contributions to the residual of U from each interval.
To illustrate how the adaptivity works, in Fig. 13 we plot the tau steps and number
of elements versus 7 used for the computation with @ = 2 shown in Fig. 12, We also
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g © 4000
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FIG. 13. Plots of the tau steps and number of mesh nodes for the adaptive computation

in Fig. 12 versus 7.

show the adapted mesh at 7 =~ 12 in Fig. 14. As a partial validation of the con-

1073

element size
=
(9]

10
1071
0.0 0.5 1.0
X
FIG. 14. Plot of the mesh sizes versus = for the adaptive computation at 7 & 12 for the

adaptive computation in Fig. 12.

sistency of the numerical results, we repeated many of the computations presented
in this paper for a range of tolerances on the size of the residual. We found that
using tolerances smaller than a (relatively large) critical value leads to consistent
numerical results. The computational results presented in this paper correspond to
residual tolerances in the range of 1072 to 10~*.

As mentioned, one advantage gained from this adaptive error control is that
it approximately preserves invariant regions. More precisely, it is proved in Estep,
Larson, and Williams [16] that if there is an invariant rectangle for the true solution
of a general system of reaction-diffusion equations, then the numerical solution
computed so as to control the residual will remain inside an approximate invariant
rectangle. Moreover, the approximate invariant rectangle converges to the true
invariant rectangle as the tolerance on the residual is decreased to zero. These are
important stability results because they eliminate the possibility of artificial blow-
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up in the sense that if the true solution does have an invariant rectangle, then for
sufficiently small tolerances, we will not observe blow-up in the numerical solution.
Vice versa if we observe blow-up in numerical solutions regardless of the tolerance
used in the adaptive error control, this is strong evidence that blow-up is occurring.

These stability results depend on the form of the reaction-diffusion system and
the numerical method only to the extent that they require certain energy estimates
on the approximation. These estimates are the discrete analogs of energy estimates
on derivatives of the true solution that can be proved once an invariant rectangle
for the true solution has been established. In Estep, Larson, and Williams [16],
the required estimates are established for dG approximations on a general class of
reaction-diffusion equations, but not directly for (13). The analogous continuous
estimates can be proved for (13) when a < 1, so we conjecture that it is possible
to obtain the discrete estimates in this case. We do not believe the continuous
estimates hold when a > 1. Experimentally, the numerical method appears to
preserve the invariant rectangles that exist for the true solution when a < 1. In
addition, as mentioned, we obtain consistent rates of growth of, for example, the
peak height of r for all sufficiently small tolerances.

As mentioned, the finite element solution (18) preserves a discrete version of the
conserved quantity (16). In particular, we show that if the space meshes are held
constant in 7 then

m—+1 m—+1
> ULUS: =Y ULUs! (21)
i=0 =0

for all n where m = m,,. In terms of the original variables, this means that

m+1 m—+1
Y SHBRHY =Y SR
=0 =0

using S =~ s and R = r to denote the numerical approximations.
Since the mesh is fixed, we have P,U""! = U"1. We decompose (18) into
equations for each component

(U (U5~ e D), )k + (U, 0)

(67 n— a—1)/a n— n n-—
(=g T U o)k = (U7 0) (22)

and

«
1+«

(U3, vy = (U3, v) + {( —a(UyH e/ U US, vk, (23)

We choose v = Uy~ ! in (21) and v = U} in (23) and note that the diffusion term
in (21) is zero with this choice. We obtain the equations

n n— n— n— o n— a— « n— n n—
(UL U5 = U U371 = (g — @)U ur, U= ks

n n n— n @ n— a— % n— n n
(U, U = (U3~ U + (5 — a(U )7/ us, U Y.

Adding these equations gives (U7, Uy) = (UP~!, U~), which is (21).
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Mesh refinement leads to a very slow increase in the quantity 75" Ur,us; so
the adaptive solution is not exactly conservative. In fact, even without the changes
caused by mesh refinement, round-off errors in the computation of U™ also tends
to cause increases in the “conserved” quantity. However both of these increases
are extremely small and Z:’:&l Up',U3'; maintains the same value to 9-10 decimal
places for the 7 scales of computations used in this paper. On the other hand, if
we compute for sufficiently large 7, with a range that depends on the data, then
Z:’:&l UT';U3; begins to change significantly from the initial value. In general for 7
this large, the diffusion in (18) is nearly zero and consequently the system is nearly
singular because of the Neumann boundary conditions.

4. A MODEL FOR SOLUTIONS THAT FORM SHEAR LAYERS

In this section, we use a combination of analysis and numerics to identify a
special approximate solution that is closely related to solutions that blow-up. This
approximate solution is almost an exact solution, in the sense that its residual tends
to zero as 7 tends to infinity. Solutions that blow-up apparently tend towards this
special approximate solution relatively quickly, so that it characterizes the blow-up
profile and the rate of blow-up.

The construction of the approximate solutions is based on the observation that
applying variation of parameters to the ordinary differential equation for 7 in (13)
yields a formula for r as a function of s,

efr/(1+a)

T(.T,‘,T) = 1“0(.’17)_1 — ’IU(.’E,T)’ (24)

where w solves
w, = e T/0F) g2 4y(0,0) = 0.

Note that this implies that
r(z,7) > 677/(1+0‘)r0(x) forO<z<landO<T.

In other words, r cannot approach zero in finite 7.

The formula for r could be used to eliminate r from the reaction-diffusion equa-
tion for s, but the resulting equation is very complicated. Rather than using a direct
substitution, we use an iterative procedure. Starting with an Ansatz on the form
of the solution s, s(x,7) = s1(z,7), we use (24) to compute a corresponding ap-
proximation rq (z,7) with initial data r1(x,0) = ro(z). The approximation (si,71)
does not satisfy the diffusion equation for s exactly. We compute a correction s,
to s1 by solving the following elliptic problem

a

TTa (1= (a+1)rtst) + 12e7/3(51) e, O<z<1

_T%€T/3(52)zm = —(51)7_ +
(82):6 ~ 07 T = 07 1

(25)

We can then use the corrected approximate solution s; +s» to compute a correction
r9 to r1 using (24) as above. We can repeat this iteration as long as desired.
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The following choice of initial data allows the two-point boundary value problem
(24) to be solved exactly:

Gy

@) =1l =G —ap

and  oo(x) = so(z) = Cs (26)
while providing a smooth, “bump”-shaped perturbation to the initial uniform shear
profile. We plot 7(z) with C; = 1.108422867,Cy = 1, C3 = 1 and Z = .7 in Fig. 15.
We choose the value of C; to normalize ro(z) to have average value 1. We plot the
evolution of the corresponding numerical solutions in Fig. 16 and plot r(x, 7) versus
z at 7 ~ 21 in Fig. 15.

1.57
24 +

1.0/_\ © 16
byl x
= =
2
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0.0 0.5 1.0 0.0 0.5 1.0
X X

FIG. 15. Plots of the initial data ro(z) (26) and the numerical solution r(z,7) at 7 & 21.

FIG. 16. Plots of the evolution of r and s versus 7 starting with the initial data (26).

Based on the numerical solution, we make the Ansatz that the leading order of
the solution s is independent of z, i.e., s(x,7) = s1(7) with

81(’1') = 03670'37'. (27)

Next we solve the differential equation for r with s(z,7) = s1(7). The differential
equation for w becomes

w(x,T) = C’ge*((aﬂ)_l“”)ﬂ w(0,0) = 0.

We define 05 = (a + 1)7! + 203 and integrate the equation to find

2

w(z, ) = U—:(e*"ﬂ -1).
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So from (24) it follows that rq is given by

Cle—r/(a+1)
1+ Cy(z —7)2 + ClC??U;l (e—"ﬂ — 1) '

r1(z,T)

C.C2
If we set =, = A, then r; becomes

Cl 60'1 T

1+ (152 + Co(z — 7)2)eo27

> =

ri(z,7) =

Now we see that for a peak to develop at x = Z for r1, we have to set A = 1. So we
arrive at the following approximation for r

Cleo'lT
= 28
Tl(xaT) 1 + CQ(Z' _ :Z_)Qeo-z,r? ( )
where
C,C?
18— 1, o1 =203 andos=(a+1)"" + 205 (29)
02

With this normalization, the functions r; and s; given by (28) and (27) are an
exact solution of the ordinary differential equation

1 _
(ri), = —arl(l —(a+ D} 1sf).

Next we compute the residual of 71 and s; for the equation for s in (13). First note
that

(rl)‘r 1 a—
s L R

and the residual R(rq,s1) for the equation for s in (13) is given by

(0]
R(’f‘l,Sl) = (81)7—a+1(1—(a+1)’r?*18%)

S
= (51)r +a—(r1),.
1

We first compute (1),

_ 20’301601T _ 01020'2(11? - 5)26027—
14 Cs(z —z)2%e%2m (14 Oy(x — )2e027)2

(Tl)‘r

and this leads to the following expression for the residual R(ry, s1)

OéCl 030'2 (11? — 5)26(02703)T

1+ Ca(x — z)2e%27

R(r1,51) = C303(2a — 1)e 737 — (30)

If o5 > 0, as is suggested by the numerical computation, we see that R(r, s1) tends
to zero as 7 tends to infinity. So, as 7 — oo, (r1,51) is a solution of (13).
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To compute the second order term of so(z,7) of s(z,7) we specialize to the case
a = 2, in which case system (13) becomes

rr = —37(1 = 3rs?),
s; = 2s5(1-3rs?) + r2e/35,,. (31)
We set
670'47'
Ep) (:E:T) =Cy (32)

14 Cy(x — 7)2e%27"
The first and second derivative of s; with respect to x are given by

20204((17 — .’f)e(‘m_g‘l)‘r
(L+ Co(z — 2)2e0s )2

(s2)z(2,7) = -

and

205 Cyelr2—04)7 8C3C(x — T)%e(Fo2—04)T
(52)az(w,7) = — — —
(14 Cy(z — T)2eo27)2 (14 Cy(z — T)2eo27)3

Therefore the diffusion term in (30) becomes

02204 (z — j)26(202—04—201+%)‘r

CyCy ( /
C? 14 Cy(z — x)2%e%27 33)

_ —oa— 1
r12e7 3 (82) g0 = —2 oz ¢ 72m0a =200 5)T 4 g
1

Next we solve for Cy and o4 to insure that (33) is equal to the residual in (30).
This yields the following set of equations
205Cy + 30120303 =0

03—02+04+201—%=0

012030'2 +4C,Cy =0

0'4—0'2—0'34-20'1—%:0.
Together with the relations (29) we find that
01203(% + 20’3) + 40204 =0

205Cy + 30120303 =0
o3+ 04 = 2. (34)

Combining the first two equations of (33) yields
L 4205 =6
3 03 = 003.

Hence o3 = 1/12 and from the last equation in (33) we conclude that o4 = 7/12.
The above analysis gives the following approximation for the solution of (13) with
initial data (26) and peak at © =
eT/G
"1+ Co(z — 7)2e7/2

L 2 G V20, e T7/12
s(z,7) ~ Tl ~ 160G, T GG ne

r(z,7) = C

(35)
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We can continue this procedure to obtain a formal solution of (13) with initial
data (26). Via (24), the new approximation for s leads to a new approximation
of r. Next we choose r2(x,7) such that 7(z,7) = r1(z,7) + ro(z,7) and 5(z,7) =
s1(7) + s2(x, 7) is an exact solution of the equation for . We compute the residual
R(7,5) and find s3(z,7) by solving

7z, 7)"2e™/?(83)pe (x,7) = R(F, 5).

In this way, we define a succession of functions that solve (13) with successively
smaller residuals.

To measure the degree to which these approximate solutions solve the differential
equation, we make a quantitative comparison of the computed numerical solution
plotted in Fig. 16 with initial data (26) with the approximate solution given in (34).

We begin by comparing the approximate r and the numerical r. We plot the
maximum of the numerical r versus 7 in Fig. 17. After an initial transient period,
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FIG. 17. Plots of the logarithm of the maximum and minimum heights of r versus 7 for

the computation shown in Fig. 16.

r apparently grows at a steady exponential rate. Removing the transient in the
data in Fig. 17 by restricting 7 > 17.983 as shown on the right, we compute a
least squares line fit on the growth of the peak height at the location of the peak
T = .68164 to find

A

Cl ~ .785 and &1 ~ .167 ~ g1 = ]./6

where we use ¢ to denote a measured value of a theoretical quantity g. The corre-
lation of this line fit is p? ~ .999999.

As seen in Fig. 17, the minimum of r, which occurs at = 0, appears to decrease
exponentially after the initial transient. We scale out the growth in the peak height
of r by computing

C\‘flea'lT

r(z,T)

and compute a least squares line fit to this data at x = 0. We find

A

Cy = .685 and 69 =~ .500 =~ 0o = 1/2
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with correlation p? ~ .9999999999.

The plot of s in Fig.16 supports the Ansatz that s is nearly constant in z. In
Fig. 18, we plot the maximum of s versus 7 along with the difference of the maximum
of s and the minimum of s. We use least squares to fit a line to the data shown in
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FIG. 18. Plots of the logarithm of the maximum height of s and the logarithm of the

maximum of s subtract the minimum of s versus 7 for the computation shown in Fig. 16.

Fig. 18 for 7 > 17.983 to find

A

C5 ~.792 and 65 ~ .083 ~ 03 = 1/12

with correlation p? &~ .999999 while the difference in the maximum and minimum
value of s decreases exponentially at an approximate rate of .89. In every case, the
computed values of the parameters are very close to the values of the parameters
in the approximate solution (34).

We are unable to compute reliable numerical values for the parameters in the
higher order terms in the model because of subtractive cancellation errors that arise
because s tends to zero everywhere at an exponential rate. A visual comparison of
the computed and predicted values of s is compelling evidence however. We plot
the final profile of s versus z in Fig. 19 along with the predicted profile computed
from (34) using values for C, C5, and 7 computed in the analysis of 7 above. Since

1379969 \\ ( .1385354 W (ﬁ

1379967 .1385352 |

s(x,1)

Model of s(x,t) with higher order term

1385350
0.5 1.0 0.0 0.5 1.0

X X

1379964
0.0
FIG. 19. Plot of the numerical solution for s and the predicted value from (34) at 7 ~ 21.

the parameter values are only accurate to within two places, these plots suggest a
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remarkably close agreement. In particular, note that the profiles of the computed
and predicted functions are very similar.

However the magnitude of the approximate and computed s agree to only two
decimal digits. The reason is that the computed solution begins with arbitrary
data that is not close to a blow-up profile. In particular, the values of Cy, Cs,
Cs, %, and v do not satisfy the equations relating these parameters. One serious
consequence of this discrepancy is that Z moves from .7 in the data to .68164 in
the final solution, which violates the simplifying assumption (29).

To obtain more natural initial data, we compute a new solution of (13) starting
with data (26) using values C; = C’l, Cy = 6’2, C5 = C5 and 7 = .68164 obtained
from the first numerical solution and then repeat the least squares model fit to
compute new values of the parameters. This second solution has a peak at T =
.67480, which means that the change in Z from the initial value to the final value in
the two solutions decreases from .01836 to .00694. Repeating this process several
times, we find rapid convergence to initial data for which Z does not move from the
initial value. We list the parameter values computed from 4 iterations in Table 1.

TABLE 1
The parameter values in the approximate solutions computed from
the numerical solutions using least squares line fits for four
iterations of initial data. The correlations of the

various fits were greater than .999999

Iteration Initial z Final z o1 C’l 09 C’Q 03 Cs
0 .700 .68164 167 785 .500 .685 .083 792
1 .68164 .67480 .1666 .349 .5000 .302 .083 1.20
2 .67480 67285 .166 113 .500 .0969 .083 2.09
3 67285 67285 .166 .0223 .50 .0190 .082 4.68

There is a practical difficulty with this iterative process to produce “good” initial
data. Namely, the values of C’g decrease for each iteration. This means that each
subsequent initial data ro becomes significantly broader. Consequently, the solu-
tions take increasingly large times to form a peak that is large enough to compute
the parameter values accurately. In fact, the peak height of the solution in the third
iteration is less than .8. For this reason, the remarkable accuracy in the parame-
ter values 61, 02, and &3 obtained for the first iteration degrades in the following
iterations.

To quantify the relation between the approximate s and the computed s from
the four iterations, we plot the ratios of the approximate s(z,7) to the computed
s(z,7) versus z in Fig. 20 and Fig. 21.

It turns out that if Z = .5 in the initial data (26), then Z = .5 for all 7. Thus
we avoid the problem of Z moving during an initial transient for that special class
of data. We show the computed solution starting with C; = 1.108422867, C = 1,
(s =1and Z = .5 in Fig. 22. We give the computed parameter values in Table 2.
The ratio of the approximate s to the computed s values, given in Table 2, is very
close to 1.
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FIG. 20. Plots of the ratio of both of the approximate solution s to the computed solution
s versus z at 7 & 21 for iteration 0 (left) and 1 (right).
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FIG. 21. Plots of the ratio of both of the approximate solution s to the computed solution
s versus = at 7 & 21 for iteration 2 (left) and 3 (right).
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FIG. 22.  Plots of the evolution of r versus 7 starting with the initial data (26) with z = .5
and the ratio of the approximate s to the computed s.

To summarize, experimentally we find that generic numeric solutions starting
from data (26) converge to the approximate solution after an initial transient period
while solutions that satisfy the assumptions and Ansatz underlying the analysis
agree very well for all time.
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TABLE 2
The parameter values in the approximate solution computed from
the numerical solution using least squares line fits. The
correlations of the various fits were greater than
.999999.
Initial & Final 7 &1 ¢ 2 Ca &3 Cs
.50000 .5000 .166 .836 .500 711 .083 .769

The approximate solution (34) which we have derived for the special initial data
(26) suggest the following model of the behavior of 7 near the peak for more general
initial data

A(z)eor™

= ¥ By (36)

7(x, T)

where A(z) > 0, B(Z) = 0 and 02 > 07. The model function allows exponential
growth with rate o; at Z and exponential decay with rate o5 — 07 away from Z.
The initial data used for the computations shown in Fig. 7, Fig. 8, and Fig. 10 is

1+ 1880(x — .64)%(x — .84)2, 64 <z < .84
1, otherwise

so(z) = 1. (37)

ro(z)? = {

This gives a smooth “bump” in ry centered at .74 of width .2 and amplitude
approximately .1. To analyse whether the suggested model for r does capture the
behavior of r near the peak, we first plot the maximum of » and s versus 7 in
Fig. 23 for the computation shown in Fig. 10. After a long initial transient period,
r apparently grows at a steady exponential rate while s tends to zero at a steady
exponential rate.
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0.5 55 105 155 05 55 105 155
T T
FIG. 23. Plots of the logarithm of the maximum height of r and s versus 7 for the

computation shown in Fig. 10.
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Removing the transient in the data in Fig. 23 by restricting 7 > 13.2, we compute
a least squares line fit on the growth of the peak height at £ = .8 to find

A(Z) ~3.34 and 61 ~ .17 =

| =

The correlation of this line fit is p? ~ .99999.
The minimum of r appears to decrease exponentially after the initial transient.
We plot the minimum of r in Fig. 24. We scale out the growth in the peak height

-1.7 4 -11.0 q
_ <
= x
:— % -11.5
= M~ k=
F; ~ e
'05 -2.1 \\\\\\\ ; '120 1
g Iy @
£ e 3 . ]
= ~ £ 12.5
€ o)

kel
-2.5 " ‘ ' -13.0 ‘ T T
13.2 13.6 14.0 14.4 18.2 13.6 14.0 14.4
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FIG. 24. On the left, we plot the logarithm of the minimum height of r versus 7 for the
computation shown in Fig. 10. The minimum of r(z,7) occurs for x = 0. On the right, we plot
the logarithm of the difference between the maximum and minimum values of s versus 7.

of r by computing
A(Z)esr™
— -1
r(z, )

and compute a least squares line fit to this data at z = .79980, where the minimum
of 7(z,-) is obtained. We find

6'2 ~ .50
with correlation p? ~ .9999999999. Hence, in the model (36) for r, we take, as for
the special initial data,
o1 — 1/6 and g9 — ]./2
Substituting 7 into the ordinary equation defining r in (13) along with a = 2, we
can solve for the model of s,

1

VoNErE o

$(x,7) =
with
o3 =1/12.
We verify that s is close to § numerically. Using the values of the maximum of s

shown in Fig. 23, we determine the exponential rate of decrease of s as 63 =~ .088
with correlation p? = .99997. Recall that the predicted rate is o3 = 1/12 ~ .083.

~
~

~

~
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From (38), we predict the value of C3 = 1/4/2C7 ~ .39 while the computed value
is C5 ~ .40. In addition, computing a least squares line fit on the data for s
shown in Fig. 24, we find that after the transient the difference in the maximum
and minimum values of s decreases exponentially with rate .83 with correlation
p? = .99997. Thus s approaches a constant profile in  much more rapidly than it
decreases to zero.

The functions 7 and § are not solutions of (13) and substituting these functions
into (13) therefore leads to a nonzero residual. If we require that this residual tend
to 0 as 7 — 0o, we obtain a differential equation for the coefficient A:

—3(A'(x))* +24"(2)A(z) =0, O0<z <L (39)

Separation of variables yields two solutions of this equation

Ci

(1) A(z) = Cy and (2) A(z) = [CENAE

for some constant C;. The second choice for A does not correspond with the
observed behavior of r and therefore, A(x) has to be constant.

Specifying the residual tend to zero as 7 tends to infinity does not put any
condition on B(z). Rather B(z) is determined by the initial data through the
limiting behavior of the solutions. We can compute an approximate representation
of B using the formula

Cye ™3 —r(x,1)e”T/?

r(z,T)

B(z) = (40)

We plot the computed B(z) in Fig. 25. The plots of B become indistinguishable for

251
<15 e =0
M 1=9.1
o — =14
051
0.0 0.5 1.0

X

FIG. 25. On the left, we plot the evolution of B(xz) for the computation shown in Fig. 10.
On the right, we plot B(z) versus z for 7 &~ 0, 9.1, and 14. The plots for 7 & 9.1 and 7 & 14 are
indistinguishable.

7 > 9, which supports the contention that the solution is converging to the model
function at 7 — oo.

To end this section, we plot in Fig. 26 the numerical solutions v and 6 correspond-
ing to the numerical solution r and s shown in Fig. 16. In terms of the physical
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o
s >
-+ o

FIG. 26. Plots of the evolution of v and 6 versus 7 starting with the initial data (26).

variables, the approximate solution (34) becomes

. 1/2
(t+1)7%/* and O(z,t) = Git+1)

6(z,t) = T 1+ Co(z—2)2(t+ D2

1
V20,
Finally, we compute

B OVt + 1)1/
= 21/2(1 + 02(1. _ :1_2)2(t + 1)1/2)2 -

Vg (2, 1)

5. THE STABILITY OF THE MODEL FOR SHEAR LAYERS

In this section, we study the effect of the choice of the initial data r¢ and sq on
the convergence of r and s to the model functions 7 and 5. We begin by presenting
examples of solutions corresponding to various sizes of perturbation from the con-
stant in rg. Then we show a solution in which a high frequency small amplitude
perturbation is added to rg. Following that, we consider the effect of altering the
center of the perturbation Z in rg. Finally, we present examples in which sq is
perturbed slightly in various ways. The numerical results in this section strongly
suggest that the model functions are stable in the sense that solutions correspond-
ing to a wide range of smooth data rg and sg converge to the model functions as
T — 00.

In the following computations, we take the initial data used for the solutions
plotted in Fig. 7, Fig. 8, and Fig. 10 as the base for comparison. We repeated these
computations with the special solution with data (26) as well as other shapes of
initial perturbations in rg. In all cases, we obtain results comparable to those we
report here.

5.1. Varying the size of the initial bump in 7o
The initial data used for the computations shown in Fig. 7, Fig. 8, and Fig. 10 is

> 1+ 384 — 3 - W/2)2(x — T+ W/2)%, T-W/2<z<T+W/2
ro(z)* = g
1, otherwise

so(z) =1 (41)

with Z = .74, A = .2, and W = .2. This gives a smooth “bump” in rq centered at
Z of width YW and amplitude approximately %A.
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In this section, we present solutions corresponding to data of the form (40) for
special choices of A and W. The various choices are listed in Table 3 and the
corresponding initial data rg are shown in Fig. 27.

TABLE 3

The parameter values for the first set of initial data.

Data Number w A T
1 2 2 7
2 2 1 7
3 2 4 7
4 4 2 7
5 1 2 7
1.2
0.84
= —— Data 1
3 -~ Data 2
= ——— Data 3
o4 - Data 4
***** Data 5
0.0 05 1.0

FIG. 27. The plots of ro(x) corresponding to the parameter values given in Table 3.

Altering the data for r affects the length of the transient period. We plot the
maximum peak height on a log scale of r and s in Fig. 28. Nonetheless, the curves

100 11
— Data 1
= = --- Data 2
) x ——— Data 3
= o e N
5 kS
: :
£ E
3 3
= =
19
0 5 10 15 0 5 10 15
T T
FIG. 28. Plots of the maximum heights of r and s versus 7 on a log scale for the solutions

with data given in Table 3.

for the solutions become roughly parallel after some initial transient period.
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In Fig. 29, we plot the profiles of r(z, 7) versus x at 7 when the maximum height
of r is approximately 40. It is evident that the profiles of r have the same shape in

— Data 1 0.67 — Datat
--- Data 2
10 ——— Data 3
fffff Data 4
77777 Data 5
= 19 X
5: m
.14
.01 . : .
0.0 0.5 1.0 0.0
X X

FIG. 29. Plots of r(x,7) versus  at 7 when the height of r &~ 40 along with plots of the
functions B(z).

the region of the peak, and this shape is dictated by the form of the model. We plot
the corresponding functions B(z) in the models in Fig. 29 as well. These functions
also have the same basic shape.

In Table 4, we list the parameter values in the model functions 7 and § computed
from the numerical solutions r and s using the least squares fits described in Section
4. All of the numbers agree with the values predicted by the model to one place and
most agree to two places. Accurate values for Data 5, which is the narrower bump,
are more difficult to compute because the peak in 7 is narrower in the beginning.
We computed the solutions for Data 5 beginning with twice as many initial space
mesh points as for the other computations.

TABLE 4
The parameter values in the model functions # and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater
than .999999

Data g1 C1 g2 g3 C3 Predicted 03
1 167 3.5 .500 .086 .39 .38
2 A7 2.5 .50 .087 .46 45
3 17 4.6 .50 .085 .34 .33
4 A7 1.6 .01 .083 .53 .56
5 A7 6.8 .50 .089 .29 27

We computed a variety of different bump sizes and also used other shapes and
obtained similar results in every case. The numerical evidence supports the con-
jecture that various smooth perturbations in the initial constant profile lead to
solutions that converge to their respective model functions.
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5.2. Introducing a small amplitude, high frequency oscillation in 7o
We add a perturbation of the form e(z),

e(z) = .05 x cos(1lmx)

to the initial data (40) with Z = .74, A = .2, and W = .2 to get Data number 6.
We plot the initial data and the evolution of r in Fig. 30.

1.57

T NN

ro(x)

0.51
0.0 0.5 1.0
X
FIG. 30. Plots of the initial Data number 6 and the subsequent evolution of r versus .

From the plot, it is possible to see that the small amplitude perturbations persist
in the solution as 7 increases, but they become increasingly insignificant in height
relative to the forming peak. In Fig. 31, we plot the profiles of r(z,7) and the
corresponding B(z) versus x at 7 & 14. The formation of the peak is the same in

0.4
10"
T =
£ 10 @ 0.2
10
0.0 05 1.0 0.0 05 1.0
X X

FIG. 31. Plots of r(z,7) and B(z) versus z at 7 & 14.

shape, width etc., but interestingly, the location of the peak moves from .7 in the
initial data to .71 in the final solution. In Fig. 32, we plot the profile of s(z,7)
versus z at 7 & 14. The legacy from the initial perturbation is apparent in B(z)
but as can be expected, the oscillations in s are damped out by the large diffusion
that exists outside the immediate neighborhood of the peak in 7.

Altering the data for r again affects the length of the transient period. We plot
the maximum peak height on a log scale of r and s in Fig. 33. Nonetheless, the
curves for the solutions corresponding to the unperturbed and perturbed solutions
become roughly parallel after some initial transient period.
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FIG. 32. Plot of s(z,7) versus z at 7 & 14.
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FIG. 33. Plots of the maximum heights of r and s versus 7 for Data 1 and 6 on a log scale.

In Table 5, we list the parameter values in the model functions 7 and § computed
from the numerical solutions r and s using the least squares fits described in Section
4 for the unperturbed and perturbed solutions. Again we get very good agreement
between the parameters for the two computations.

TABLE 5
The parameter values in the model functions # and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater
than .999999

Data o1 C1 o2 g3 Cs Predicted C3
1 167 3.5 .500 .086 .39 .38
17 4.1 .51 .087 .36 .35

We computed similar examples using a variety of regular and irregular small
amplitude, high frequency perturbations in 7y and obtained similar results. The
numerical evidence suggests that the formation of the shear layer dominates the
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dynamical behavior of solutions of (13) and that a wide class of solutions converge
to the model functions.

5.3. Varying the location of the initial bump in 7
In this section, we present numerical results for solutions that begin with the
“bump” in rg centered at different points Z. We compare solution corresponding
to initial data (40) with A = .2, W = .2, and Z = .6 (Data number 7) and Z = .8
(Data number 8) to the original Data number 1 with z = .7.
Moving the location of the bump affects little. This is evident in the plots of
the maximum peak height on a log scale of r and s in Fig. 34. In Table 6, we list

100 1 14
- —— Data 1
o X ---- Data 7
\é’ [ ——— Data 8
- S
£
E 10 2
£ — Data 1 =
x ---- Data7 (]
% ——— Data 8 =
14
1 : : : T T T
0 5 10 15 0 5 10 15
T T

FIG. 34. Plots of the maximum heights of r and s versus 7 on a log scale.

the parameter values in the model functions 7 and § computed from the numerical

solutions r and s using the least squares fits described in Section 4 for three different
solutions.

TABLE 6
The parameter values in the model functions # and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater
than .999999

Data g1 C1 g2 g3 Cg Predicted 03
1 167 3.5 .500 .086 .39 .38
A7 3.3 .01 .087 40 .39
8 A7 3.2 .01 .087 40 40

We repeated these computations with the initial perturbation located at a variety
of positions through [0,1] and obtained similar results for all computations. The
numerical evidence suggests that moving the location of the perturbation has little
effect on the convergence of solutions to the model functions.

5.4. Introducing perturbations into the initial profile of s
In contrast to the previous sections, we now consider the effect of an initial
perturbation in the value of so. To construct Data number 9, we add a small
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amplitude, high frequency perturbation (),
e(z) = .1 x cos(11mz)

to sp in (40). It turns out that adding perturbations to so that are relatively small
compared to the perturbations to ro has little effect on the solutions.

In Fig. 35, we plot the profiles of r(x,7) and the corresponding B(z) versus x
at 7 & 14. In Fig. 36, we plot the profile of s(x,7) versus x at 7 ~ 14. The close

r(x,t)

0.0 05 1.0 0.0 05 1.0
X X

FIG. 35. Plots of r(z,7) and B(z) versus z at 7 ~ 14 for Data 1 and Data 9.

113564
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FIG. 36. Plot of s(z,7) versus « at 7 &~ 14 for Data 1 and 9.

agreement in these profiles show that the perturbations in sy have little effect in
the end.

This is reflected in the length of the transient period, which is hardly altered.
We plot the maximum peak height on a log scale of r and s in Fig. 37. Finally,
we list the parameter values in the model functions computed from the solutions
in Table 7.

We computed several examples of solutions that begin with the same perturbation
in r¢ and various small amplitude perturbations in sg and obtained similar results in
every case. The numerical evidence suggest that initial perturbations in sq that are
small compared to the initial perturbations in rq have little effect on the solutions.
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FIG. 37. Plots of the maximum heights of r and s versus 7 for Data 1 and 9 on a log scale.
TABLE 7

The parameter values in the model functions # and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater
than .999999

Data o1 C1 o2 g3 Cs Predicted C3
1 167 3.5 .500 .086 .39 .38
17 3.2 .51 .087 .40 .39

We finish this section by considering the solution corresponding to an initial
perturbation in s¢ while rq is constant. More precisely, the initial Data number 10
is

1+ 34—z -W/2)2(x -2+ W/2)%, 2-W/2<z<T+W/2
1, otherwise
ro(z) = 1, (42)

so(x) =

with z = .74, A = .2, and W = .2. This gives a smooth “bump” in s centered at
Z of width W and amplitude A. We plot the evolution of r and s in Fig. 38.

FIG. 38. Plots of the evolution of r and s versus 7 for Data 10.
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While the initial perturbation to sg is damped out, it is still sufficient to cause
a peak to grow in 7, albeit after a much longer transient period than we have seen
so far. In Fig. 39, we plot the profiles of r(x,7) and the corresponding B(z) versus
z at 7 & 29. The peak is centered at .71 though the initial bump in sg is centered
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FIG. 39. Plots of r(z,7) and B(z) versus z at 7 & 29.

at .7. In Fig. 40, we plot the profile of s(z,7) versus x at 7 ~ 29. Both the late
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FIG. 40. Plot of s(z,7) versus z at 7 & 29.

profile of s and B are altered a little bit from the corresponding plots for Data 1.

This data clearly leads to a longer transient period. We plot the maximum peak
height on a log scale of r and s in Fig. 41. Nonetheless, the curves for Data 1 and
Data 10 become roughly parallel after some initial transient period.

In Table 8, we list the parameter values in the model functions 7 and § computed
from the numerical solutions r and s using the least squares fits described in Section
4 for the unperturbed and perturbed solutions. Again we get very good agreement
between the parameters for the two computations.

These numerical results give further evidence that the formation of the shear
layer dominates the dynamical behavior of solutions of (13) and that a wide class
of solutions converge to the model functions. In the next section we give more
evidence of this fact by varying the choice of initial data even further.
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FIG. 41. Plots of the maximum heights of  and s versus 7 for Data 1 and 10 on a log
scale.
TABLE 8

The parameter values in the model functions # and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater
than .999999

Data o1 C1 o2 o3 Cs Predicted C3
1 167 3.5. .500 .086 .39 .38
10 17 .32 51 .084 1.1 1.3

6. VARIATIONS IN THE MODEL EQUATIONS AND DATA

To this point, we have restricted the investigation to considering solutions that
begin with data that is close to one of two functions, namely the “smooth bump”
and the special solution, and to a = 2. In this section, we widen the consideration
to more exotic choices of data and also to variations in « and even in the differential
equations themselves. In some cases, we get results that are closely connected to the
results obtained in the previous sections. In other cases, we get new and interesting
behavior that point to the complicated nonlinear nature of (13).

6.1. Multiple peaks
We previously considered the effect of adding a small amplitude, high frequency
perturbation e(z),

e(z) = a x cos(11mz) (43)

to the bump data (40) and saw that it had little effect on the formation of the largest
peak in the solution. It is natural to consider the effect of adding such perturbations
to initial constant values for r and s. In Fig. 42, we plot the evolution of r and v
versus 7 and ¢ for the solution corresponding to Data 11 obtained by adding (43)
with a = .02 to the initial r¢ = 1. In Fig. 43, we plot the evolution of r and v
versus 7 and ¢ for the solution corresponding to Data 12 obtained by adding (43)
with a = .1 to the initial so = 1. We see the solutions develop several peaks of the
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FIG. 42. Plots of the evolution of r and v versus 7 and ¢ for Data 11.

FIG. 43. Plots of the evolution of r and v versus 7 and ¢ for Data 12.

same shape as those analyzed previously. The solution corresponding to the initial
perturbation in sg has a much longer transient period.

Solutions corresponding to very broad initial data can also form more than one
peak. We form initial data by altering (26) to get Data 13,

~1.01223170451293
ro(@) = 1+ (z—.5)4

and so = 1 so that both rq and so are symmetric about x = .5. We plot the
evolution of r and v versus 7 and ¢ in Fig. 44. Interestingly, one very broad peak

>

FIG. 44. Plots of the evolution of r and v versus 7 and ¢ for Data 13.

initially develops but the center “collapses” and two peaks are left to grow. Both
peaks, centered at .40322 and .59678 respectively, appear to be growing at the
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same rate and with the same profile. We compare the parameter values in the
model computed by least squares for the solutions corresponding to Data 0 and
Data 13 in Table 9. For Data 13, the model is fitted to the left-hand peak.

TABLE 9
The parameter values in the model functions # and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater
than .999999

Data g1 Cl g2 o3 Cg Predicted 03
0 .167 .785 .500 .0831 792 798
13 .16 .10 49 .062 14 1.3

6.2. Reversing the initial perturbation
It is natural to consider the solution corresponding to (40) with A = —.2, W = .2,
and T = .7, in other words with an initial “dip” rather than a “bump”. We label
this as Data number 14. The resulting solution is very interesting. We plot the
evolution of the solution in Fig. 45 and the final s and r profiles in Fig. 46. The

FIG. 45. Plots of the evolution of r and v versus 7 and ¢ for Data 14.
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FIG. 46.

Plots of 7(z,7) and s(x,7) versus = at 7 & 22.

solution appears to form two extremely sharp “spikes” at the positions where the
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initial data has discontinuities in the second derivative. The spikes have profiles
similar to those of other solutions on one side, but on the other side they appear
much steeper, even suggesting that the solution might lose differentiability at the
tips. This loss of regularity is also reflected in the profile of s. Interestingly, one
spike appears to dominate the other. We study the “competition” between spikes
in more detail below.

6.3. Competition between spikes

We have seen several examples now of initial data leading to solutions with several
spikes. In this section, we consider the interaction of two spikes in one solution.
It appears that there is a kind of competition between spikes and in situations in
which the solutions lack symmetry, one spike tends to dominate other spikes after
a lengthy transient period.

We alter the bump data to give an initial function with two bumps, one at z;
and one at To.

1+ 116/\;?11 (x — T —)/\71/2)2(3j - +Wl/2)2’
T —Wi/2<x<T+W /2

ro(x)? = § 1+ 1)6,\212(37—52—W2/2)2($—f2+W2/2)2;
P —W2/2 <z <i‘2+W2/2
1, otherwise
so(z) = 1. (44)

We compute solutions corresponding to parameter values listed in Table 10. Data
15 has the left-hand bump closer to the middle of [0, 1], Data 16 has a fatter bump
and Data 17 has a taller bump.

TABLE 10

The parameter values for initial data with two bumps.

Data Number Wh A T1 Wi Ai Z1
15 2 2 4 2 2 7
16 4 2 3 2 2 7
17 2 4 3 2 2 7

In each case, the corresponding solutions form two peaks initially and then one
peak begins to dominate after a long transient period. We plot the evolution of
the solutions for Data 15 in Fig. 47. We plot the evolution of the solutions for
Data 16 in Fig. 48. Finally, we plot the evolution of the solutions for Data 17 in
Fig. 49. The data suggests that taller peaks and peaks closer to the middle of [0, 1]
dominate.

The degree of domination by one peak is not the same in the three solutions. This
affects the convergence of the solutions to the model. We compare the parameter
values in the model computed by least squares for the solutions corresponding to
Data 0, 15, 16, and 17 in Table 11. In the solutions with multiple peaks, the model
is fitted to largest peak in the solution. The closeness of the fit to the model appears
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FIG. 47. Plots of the evolution of r and v versus 7 and ¢t for Data 15.
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FIG. 48. Plots of the evolution of r and v versus 7 and t for Data 15.
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FIG. 49. Plots of the evolution of r and v versus 7 and ¢t for Data 15.

to be correlated to the degree that the larger peak dominates the other peak, with
very good agreement for the solution corresponding to Data 17.

6.4. Varying o

We use the value a = 2 largely for computational reasons. Solutions for a > 2
for the peaks that grow in height and become very narrow extremely rapidly and
require excessively fine discretizations for accurate computations. On the other
hand, when « approaches 1, the transient period becomes longer and longer, leading
to problems with accuracy due to the accumulation of error.

The main observation about varying « is that the behavior reported on in this
paper appears to depend smoothly on the value of a. For example, when «a is
close to 1, layers form after a very long period when there is hardly any motion
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TABLE 11
The parameter values in the model functions 7 and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater

than .999999

Data g1 Cl g2 o3 Cg Predicted 03
0 .167 785 .500 .0831 792 .798
15 .23 1.1 .57 .14 97 .67
16 .19 2.4 .53 .096 .46 18
17 A7 2.4 .50 .084 33 34

in the solution. We have seen that when a = 1, there is no smoothing nor peak
formation in solutions. The slow evolution for a close to 1 is evident in the plots
of the evolution of the solutions for & = 1.1 beginning with the special data (26)

shown in Fig. 50.

S
<
QA

FIG. 50. Plots of the evolution of v and v, versus 7 and t for the solution with @ = 1.1
beginning with the special data (26).

When «a close to 2, the corresponding solutions appear very similar to the solu-
tions for a = 2 while there is a close correlation in the parameters for the model
determined by least squares. In Table 12, we list the parameter values for solutions
for a = 1.9, 2.0, and 2.1 starting with special data (26).

TABLE 12
The parameter values in the model functions # and 3§ computed
from the numerical solutions using least squares line fits.
The correlations of the various fits were greater
than .999999

«a o1 C1 g2 g3 Cs Predicted C3
2 167 785 .500 .0831 792 798
1.9 .16 .79 .50 .070 78 .79

21 .18 .81 .50 .097 .79 .79




ANALYSIS OF SHEAR LAYERS 45

6.5. Adding diffusion to the equation for r
It is natural to wonder about the extent to which the behavior of the solutions
exhibited so far depends on the singular nature of the equation for the rescaled
temperature r. In particular, the set of equations

s, —poer/0Fa)g @ s(1—(a+1)r*'s?), 0<z<1,0<t,
1+a

1
1+«

Tr — €lggy = — r(l—(a+1)r*7's?), 0<z<1,0<t (45)
with homogeneous Neumann boundary conditions for r and s is a natural variation
of the original model (13). Here we consider € to be a small diffusion parameter.
The presence of diffusion appears to regularize the solutions in the sense that
a peak in r develops to a point and then becomes fixed. The maximum peak
height appears to increase as € decreases. We plot the maximum of r(z, 7) for three
solutions starting with the special data (26) and € = .001, .0001, and .00001 along
with the special solution computed above in Fig. 51. The damping effect of the

1
e ©
X X
k) k]
g § A
£ 2
= s
=
.01 " . :
0 5 10 15 0 5 10 15
T T
FIG. 51. Plots of the maximum and minimum of r(z,7) versus 7 for solutions of (44)

starting with the special data (26) and the special solution.

diffusion on the growth of the peak is similar to that experienced by the numerical
diffusion induced by coarse discretization, as in Fig. 12.

We also plot the minimum height of r(z,7) in Fig. 51. We see that there is
apparently no lasting effect on the smallest value of r from the diffusion term. This
is also true of the decay rate of the value of s. In Fig. 52, we plot the maximum of
s(x, 7) for the four computations.

In terms of the physical variables, a solution of (44) forms a layer that steepens
to a certain point and then remains fixed after that. We plot the evolution of the
solution for e = .00001 in Fig. 53.

7. CONCLUSION

The goal of this paper is to explore the role of dissipation in the large-time
behavior of systems of nonlinear hyperbolic conservation laws. In particular, we
are interested in the question of whether the combined dissipative effect of viscosity
and thermal diffusion can counterbalance the destabilizing influence of nonlinearity.
In this paper, we have investigated a fundamental system of conservation laws for a
one dimensional flow with a temperature dependent viscosity to determine whether
or not solutions that begin near a uniform shear profile develop arbitrarily sharp
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T
FIG. 52. Plot of the maximum of s(z,7) versus 7 for solutions of (44) starting with the

special data (26) and the special solution.

FIG. 53. Plots of the evolution of 7 and v versus 7 and ¢ for the solution of (44) with
€ =.00001.

shear layers as time passes. We have shown that the formation of shear layers is due
to the fact that viscosity decreases sufficiently quickly as temperature increases.

To analyse the fine structure of the bands we proposed a special function which
solves the problem to within an extremely small residual that converges to zero
exponentially quickly as time increases. The form of this function causes a shear
layer to develop and this layer becomes arbitrarily sharp with increasing time.
We use numerics to show that this model function is very close to being a true
solution and use the model to explain some aspects of the behavior of the solutions.
We also use careful numerics to show that a wide class of solutions beginning as
smooth perturbations of the uniform shear flow converge to the model function as
time passes and obtain quantitative information on the rate of convergence. Finally,
we consider more exotic initial data and also perturbations of the original model
equations and give evidence that the phenomena we uncover are in some sense
robust and generic.
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