
Parallel Computing 7 (1988) 439-443
North-Holland

439

Free-Lagrange hydrodynamics with a
distributed-memory parallel processor

Roy WILLIAMS

Concurrent Computation Project, California Institute of Technology, Pasadena, CA 91125, U.S.A.

All .ac t . The PIFL (Parallel Irregular Free-Lagrange) code solves two-dimensional hydrodynamics with the
mesh vertices moving with the fluid, with no rezoning. The irregular mesh is made of triangles and each
processor deals with one or more connected domains of fluid. After each time step the mesh is topologically
restructured, mesh points may be created or destroyed, and there is a local load-balance. Every few steps there is
a global load balance. The code runs on a hypercube under Cubix and is designed to run most efficiently in the
limit of a large number of large-memory processors.

geywords. H y d r o ~ a a m i ~ irregular free-Lagrange, distributed-memory parallel processor, hypercube.

Hydrodynamics calculations absorb a large fraction of the worlds supercomputing resources.
It can be applied to the design of anything which moves through air or water, to the design of
the combustion chamber of an internal combustion engine, to explosive devices, to the pipes
and valves of chemical refineries, to the design of artificial heart valves.

In many cases, the interesting aspect of the fluid flow is the motion of a bounding surface,
which may be an interface between two fluids such as a free surface, or for example an aircraft
wing vibrating in response to the flow. At the same time, the flow may be complicated only in
certain regions, such as the boundary layer on the vortex street, but smooth arid uniform
everywhere else. Free-Lagrange hydrodynamics becomes the method of choice for these highly
inhomogeneous problems where there may be complex moving boundaries.

Conventional Eulerian hydrodynamics calculates the time-dependent state of the fluid at
fixed mesh of points. Although there is the advantage that the mesh can be carefully set up in
advance, the problem is that the future state of the fluid at a point depends on what is
happening some distance upwind; and for high fluid velocity this nonlocality is exacerbated. In
addition, a moving boundary may pass through the point, so that the very identity of the fluid
being modelled changes discontinuously.

Free-Lagrange hydrodynamics calculates the position and state of a mesh of points which
move with the fluid. The future state of a point now depends only on the local conditions and
there are no upwind derivatives. If a point is on a boundary, it remains on the boundary, and if
it is water it cannot become oil at a future time. In exchange for these features, the mesh is
moving and loses any initial regularity. Indeed, it must continually be topologically changed to
keep it from becoming tangled, and points created or destroyed to keep the density of mesh
points within prescribed bounds. The irregularity of the mesh however brings its own ad-
vantage, which is that an adaptive mesh becomes easy; it is simply a matter of making the
desired mesh-point density inhomogeneous.

0167-8191/88/$3.50 © 1988, Elsevier Science Publishers BN. (North-Holland)

440 R. Williams / Hydrodynamics with a parallel processor

Fig. 1. Triangular mesh.

The major computational effort of hydrodynamics is the solution of a Poisson equation,
usually to find the pressure field. For a fixed rectangular mesh, the Fast Fourier Transform will
achieve this quickly, but for a dynamic irregular mesh, methods as fast as this are not avaiiable.
The speed of the Poisson solver is heavily dependent on the 'quality' of the mesh, so that the
restructuring must not only keep the mesh untangled, but also try to optimize this 'quality'
measure. Quality is roughly equivalent to the condition number of the stiffness matrix, which is
the matrix to be inverted for the solution of the Poisson equation.

The PIFL (Parallel Irregular Free-Lagrange) code, under development at Caltech, computes
two-dimensional hydrodynamics on a distributed-memo~ parallel processor. The mesh is
created by tesselating the area of interest with triangles the vertices of which form the
mesh-points. Such a mesh is illustrated in Fig. 1, which is a triangulation of a disk. The heavy
lines represent boundaries between processor domains. Figure 2 shows a representation of the
same mesh with more structural details shown. The major divisions are between processors of
the parallel machine, and each processor deals with a set of triangles and their associated
vertices. There are two basic data structures, the triangle and the vertex: triangles are connected
to exactly three vertices, and vertices connected to an arbitrary number of triangles. Position
and pressure values are stored at vertices, and velocities at triangles. The heavy lines around a
processor region show a pointer from a boundary vertex to the next clockwise boundary vertex
around the processor domain.

Vertices at a boundary between processors are stored several times, once in each processor,
and they have the same position, pressure, etc. For the purposes of Fig. 2, these sibling vertices
have been artificially separated and connected by dashed lines. The two or more siblings all
represent the same 'physical' vertex, and communication between processors can be thought of
as occurring between siblings along the dashed lines.

Figure 2 is the result of initially assigning each of 16 processors those triangles whose centers
fall within a given square: these squares form a 4 × 4 lattice. The boundary of the disk is a
fixed wall and there is a vortex at the center, so that the roughly square processor domains are
quickly distorted to the shapes sk6~v~ in the figure.

R. Williams / Hydrodynamics with ,a parallel processor 441

Fig. 2. PIFL mesh.

The hydrodynamics algorithm is that of Crowley, Fritts and Boris [2,5], where the vertex
velocities are area-weighted averages of the surrounding triangle velocities, and the pressure is
such that the discretized mass-flux divergence is zero, corresponding to an incompressible flow.
The timestep is chosen to be one quarter of the smallest step which would tangle the mesh, and
the algorithm uses an implicit leapfrog differential equation solver.

The code runs on a hypercube architecture under Cubix [3], and communication is by means
of the Crystal Router [3] protocol; so that outgoing messages are accumulated in a buffer with
a header containing the destination processor for each message. There is then a loosely
synchronous communication step,, after which the received messages can be extracted from a
buffer.

After each time step, the mesh is restructured [6] to improve the mesh quality. Loosely
speaking this means changing the connectivity of the mesh vertices to make the triangles closer
to equilateral, which in turn improves the condition number of the stiffness matrix by making it
diagonally dominant. In addition there are changes to increase the mesh-point density by
adding more vertices, and to decrease the density be removing vertices. In t~s way the mesh
remains untangled and the density of vertices can be kept within prescribed bounds. The
desired density can be inhomoger~eous, so that for example the density of mesh points close to
an aircraft wing can be much greater than the density far away.

Figure 3 shows the three topological changes to the mesh used for restructuring~ The first
change, Fig. 3(a), exchanges the diagonal of a quadrilateral whenever the sum of the angles
opposite the diagonal is greater than ½~r, and when all these exchanges have been done the
stiffness matrix is guaranteed to be diagonally dominant [2,5,6]. The next change, Fig. 3(b), is
done when an edge is too long, so that a new vertex is created at the midpoint and joined to the
opposite vertices. The third change, Fig. 3(c), removes a vertex when an edge is too short: a
series of diagonal exchanges takes place until the victim has exactly three neighbors. The vertex
can then be cleanly removed leaving a triangular mesh. Each of these restructuring operations
can happen when a processor-processor boundary passes near or through the part of the mesh
being restructured; in this case however communication between the processors is needed, and

442 R. Williams / Hydrodynamics with a parallel processor

A÷B=,--~-
Exchange

Birth

©

Death Fig. 3.

only one communication step is assigned to the restructuring whereas the internal vertices are
examined many times until completion. Thus the mesh is somewhat poorer in quality near
boundaries.

Dynamic restructuring provides a convenient download for a large mesh: a coarse mesh is
created in one processor, then split up among several processors and the desired mesh-point
density increased, then the refined mesh split again, and so on until the collective memory is
filled.

Present and future work is the design of a dynamic load balancer for PIFL. This optimiza-
tion algorithm must do several things under difficult conditions. Each processor must decide
which, if any, of the triangles in its domain are to be given away and to whom they are to be
given. This choice is based on the following criteria.

Firstly, the number of triangles per processor should be approximately equal, since for the
loosely synchronous mode of parallel operation the army marches at the pace of the slowest,
which is the one with most triangles. Secondly, we wish to reduce the communication as much
as possible, which means reducing the total length of processor-processor boundary, weighted
by the hypercube distance between the processors; this tends to deteriorate since an initially
compact processor domain tends to become strung out as the simulation progresses. Thirdly,
we wish to move the boundaries so that the poorer quality mesh near the boundaries is made
internal to a processor and thus exposed to restructuring; this I call load balance convection.

The optimization algorithm must work in parallel [1], meaning that each processor only has
information about its own domain, and possibly some information communicated from

R. Williams / Hydrodynamics with a parallel processor 443

surrounding processors. While it decides on the basis of this information its neighbor is also
deciding, and the result of the simultaneous moves may be worse than the original partitioning.
In addition, the load balancer must work quickly, for the time spent load balancing is
unproductive housekeeping.

PIFL is very much work in progress. In addition to the dynamic load balancer, I am working
on a robust and fast Poisson solver, on the introduction of interfaces between fluids, on a
dynamically adaptive mesh (reacting to for example the shear rate in the fluid), and on the
production of amimated videos of the moving fluid.

References

[1] F. Barajas and R.D. Williams, Optimization with a distributed-memory parallel processor, Caltech Concurrent
Computation Project Report 465.

[2] W.P. Crowley, in: Proc. 2rid International Conference on Numerical Methods in Fluid Dynamics (Springer, Berlin,
1971).

[31 G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.IC Salmon ,and D.W. Walker, Solving Problems on Concurrent
Processors (Prentice-Hall, Englewood Cliffs, NJ, 1987).

[4] MJ. Fritts, in: D.L. Book, ed., Finite-Difference Methods for Vectorized Fluid Dynamics Calculations (Springer,
Berlin, 1981); also in: MJ. Fritts, W.P. Crowley and H. Trease, eds., The Free-Lagrange Method, Proc. 1st
International Conference on Free-Lagrange Methods, Lecture Notes in Physics 238 (Springer, Berlin, 1985).

[5] MJ. Fritts and J.P. Boris, The Lagrangian solution of transient problems in hydrodynamics using a triangular
mesh, J. Comput. Phys. 31 (1979) 173-215.

[6] R.D. Williams, Dynamical grid optimization for Lagrangian hydrodynamics, Caltech Concurrent Computation
Project Report 424.

