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Abstract :fFhe classical limit of the nuclear shell model is shown to be a many-dimensional hamiltonian
system in which the coordinates and momenta are the coherent-state parameters of the original
quantum system . Several methods for semiclassical quantization of this system are discussed,
including surfaces of section and the Birkhoff-Gustavson transformation to action-angle variables.
Application to a schematic three-level shell model .indicates some of the new problems involved
in requantizing multi-dimensional systems which are not present in one-dimensional examples.
These include difficulties in finding periodic orbits and the onset of stochasticity.

1. Introduction

Several recent studies have suggested that functional-integral representations of the
many-body propagator are of potential use in nuclear physics problems, particularly
when evaluated in the stationary-phase (semiclassical) approximation. Indeed, the
realization that the latter is closely related to the phenomenologically successful time-
dependent Hartree-Fock (TDHF) approximation offers hope of ultimately achieving
tractable descriptions of a variety ofnuclear observables . Among these are bound-state
energies'" the nuclear partition function, spontaneous and induced fission life-
times' ,'), and elements of the many-body S-matrix 5).

This paper is concerned with semiclassical approximations to the eigenvalues of
nuclear hamiltonians, specifically shell-model hamiltonians . Functional integral treat-
ments imply that these can be obtained by considering the "classical periodic TDHF
trajectories for a given hamiltonian and then "requantizing" them, naively in analogy
with the familiar Sommerfeld-Wilson quantization integral 6) . Onecan also obtain this
same prescription by requiring that the TDHF equations preserve the gauge-
invariance ofthe original Schr6dingerequation'). Todate, semiclassical methods have
been applied with good results to a schematic two-level shell model ','.s~ and to
certain interacting boson hamiltonians 9) . For these cases, in which the non-trivial
classical TDHF equations are one-dimensional, there is a readily identifiable constant
of the motion (the total energy) and requantization is fairly straightforward and
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unambiguous. However, in the more general case of a non-integrable (multi-
dimensional) system, even the quantization prescription is in dispute.
Our primary goal in this paper is to explore the conceptual and practical aspects of

semiclassical quantization procedures in somewhat more realistic systems, those in
which the non-trivial classical TDHF equations are of dimension two or greater. For
small amplitude (low energy) excitations, there is no problem since the classical de-
scription reduces to the readily integrable one of a set of uncoupled harmonic normal
modes and the familiar RPAlimit is recovered . However, there is good reason to expect
qualitative changes at higher energies where the classical mechanics need no longer be
integrable and, in fact, the periodic trajectories are even difficult to find, let alone
quantize .
Aconsiderable literature already exists concerning the semiclassical quantization of

non-integrable systems 1°, "), largely in connection with problems of intramolecular
dynamics . This has developed concurrently with the growing emphasis in classical
mechanics on the topological and global structure of trajectories rather than on their
microscopic detail . Hence, much of the material we present here amounts to a restate-
ment ofthese ideas in a language appropriate to nuclear physics and their application
to nuclear problems. This alone seems to be a worthwhile goal as many basic points
remain in dispute and the field continues to be an active area of current research . It is
particularly intriguing to ask how such classical concepts as strange attractors or
stochasticity are manifest in the quantum spectrum 12). Conversely, it may be that a
classical description can offer novel insights into level densities, collectivity, doorway
states and giant resonances .
We have chosen to analyze in detail a simple nuclear hamiltonian which gives non-

integrable classical behavior, a schematic three-level shell model, for which the classical
dynamics is two-dimensional . In sect. 2, we review the use of coherent states to obtain
the classical hamiltonian corresponding to an arbitrary shell-model hamiltonian. Sect.
3 contains a description and discussion of several quantization methods. In sect . 4, we
present our results for the SU(3) model. Finally, sect. 5 contains a summary and our
conclusions.

2. Semiclassical description of the shell model

We use the formalism of Blaizot and Orland 18~ in which a shell-model coherent
state is parametrized by a set of c-numbers Zph , with p and h particle and hole orbitals ;
Zph can be thought of as an np x nh matrix, where np and nh are the numbers of particle
and hole orbitals . The coherent states are generated by a Thouless transformation,

Jz> = exp(~ Zpop ah
)
1Oi,

	

(2.1)
ph
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of the fermion vacuum state of all hole orbitals filled, 10> . They allow a completeness
relation of the form

so that

&2dZpu*
IZMZ, Z* )< Z1 = 1 .

	

(2.2)
fu

ß(z, Z* ) = [det (1 +z +z)] - (°P+ *h

	

1) .

The wave function ofthe system, IT), is then described by the analytic function O(z~ by
giving its projection on the coherent state Iz>

The fact that the measure u(z, z*) is not unity essentially means that the coherent states
(2.1) are not orthonormal and hence that the variables zph, zp*u are not canonical in the
corresponding classical system . We therefore transform to the canonical variables la) :

fph = E ZphI(1 +Z+Z)-}lh'h'

	

(2.6)
h'

The completeness relation in terms of the ßph variables now has unit measure

f

	

dßphdß;h
Ißi<ßl = 1 .

	

(2.7)h
p 2nt

The expectation value ofa given hamiltonian can be calculated fromthe density matrix
elements

Pap = <ßlaß aalß>,

Pph = [Al -ß+
Y)*Iph,

Ppp' = OP )'P,
Phh' = ahh'-(ß+l')hh' .

The eigenvalue problem we seek to solve is

Pup = Pph+

(2.3)

(2.8)

H(aâ , ap)lW> = El IF).

	

(2.9)

O(z) = <zl p>, (2.4)

*
I V) = f II

dz2'ph
IZ>Y(Z, Z*)W(Z . (2.5)

ph
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Using the property of coherent states,

* IZ> = ZphIZ),

	

(2.l0)
ôzph

we obtain a Schródinger equation equivalent to the original problem,

HrßphI-1~
aß

	

) 9'(l'ph) = E9'(fßph) .
`\

	

ph

'Aph = aH/aßpe,
-iAph = âH/ôßph.

K(ß, iT, T) = fD[ß, ß*] exp «S[ß, ß*]/h),

3. Quantization

Theboundary conditions on ik are somewhat uncertain, since the ß are restricted to lie
in a hypersphere by virtue of (2 .6). The semiclassical limit ofthis Schr6dinger equation
can be obtained by the WKBansatz and the methods ofsubsect. 3.1, giving a classical
hamiltonian H(ßph, ßp*h) with Hamilton's equations,

(2.12)

This classical hamiltonian is then just the expectation value of the shell-model hamil-
tonian calculated with the density matrix (2 .8), and (2.12) are the familiar TDHF
equations.
The solution to the original problem (2.9) can also be expressed as a path-integral for

the propagator,

S[ß, ß*] = J

o
dt{Tr(iß + ß- <PIHIP>)} .

	

(2.l3)
0

The stationary phase approximation to this path integral, SS = 0, is identical to the
TDHF variational principle and also yields the equations of motion (2.12) .

Given a classical hamiltonian, there are essentially two methods for finding semi-
classical approximations to the quantum energy levels . The first of these is Einstein-
Brillouin-Keller quantization 14-16, while the second is that based on periodic trajec-
tores 2. 10,13.17). We treat each in

h
turn, specializing to a two-dimensional system,

and then give a partial reconciliation' e). An "analytic" algorithm, the Birkhoff-
Gustavson transformation 19), is also discussed .
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3 .I . EBK QUANTIZATION ")

We start with a Schr6dinger equation, such as eq. (2.10 written in terms of "coor-
dinate" and "momentum" operators, q andp = -ihalaq

H(q,p)o(q) = Etk(q),

	

(3.1)

where 4 is a stationary state and E is its energy, and make a WKB-like ansatz,

tk(q) = A(q)exp(iS(q)
)

	

(3.2)

with A and S real . To zeroth and first order in fit, respectively, one finds

aa
H q, ôql = E,

	

(3.3)

where
q
(VA') = 0,

	

(3.4)

» =~H(q, p).
p

Eq . (3 .3) is the Hamilton-Jacobi equation of classical mechanics z°~ and (3.4) is the
Liouville equation, allowing the interpretation of AZ as the classical phase-space
density. Defining p = DSlaq, a variable instead ofan operator, (3 .3) can be solved by the
method of characteristics to obtain Hamilton's equations,

4 = OHlap,

P = -aHlaq,

S = 1p - tjdt .

	

(3.5)

Solving these equations maynot producea single-valued or even multivalued function
S(q) ; the trajectory may generate an arbitrarily large number of p values for an
arbitrarily small neighborhood about a given q. In that case the system is said to be
stochastic. Ifhowever, the classical variables are finitely multivalued (a finite number of
p-values for each q-value), the system is said to be quasiperiodic andwe mayreplace the
WKB ansatz (3 .2) by Ebranches Aexp (iSlh) . We then demand single-valuedness of the
semiclassical wave function ; i.e. that the differenceASbetween any sheet and itself be a



R . D. Williams, S . E. Koonin / Semiclassical quantization

	

77

multiple of 2nh . Furthermore, the semiclassical wave function should match correctly
to an Airy function 21 ) at the edges ofthe classically allowed region, giving the Maslov
correction 16

.22) to the quantization condition,

with n; an integer, y, a circuit in phase-space lying on the manifold consisting of the
sheets p(q) and ai the number of times the circuit y, touches the edges of the classically
allowed region . This manifold is analogous to the Riemann sheet of complex analysis
and has the topology of a torus, as is clear from the "hairy coconut" theorem : the
hamiltonian velocity forms acombable tangent vector field which is nowhere zero, so
the topology cannot be spherical. We thus havetwoindependent circuits and hence two
quantum numbers.

These considerations are the basic ideas underlying the EBKmethod for calculating
semiclassically the energy levels of a system whose classical variables are finitely
multivalued functions of q. Oneadditional ingredient is the KAM theorem `~ which

q2

OS - ds =
f

	

p -dq = 2ah(n, +4oc,),

	

(3.6)f Y+

	

Y~

q 2

Fig . 1 . Schematic illustration of a four-dimensional invariant torus when projected in three-dimensional
space . One dimension can be omitted because of energy conservation . Two of the four possible

coordinate triplets are shown, with surfaces of section .
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states that if a bounded system is sufficiently close to being separable, then it has this
property, so that the trajectories do lie on suchinvariant tori or, in other words, they are
quasiperiodic. For a system with two degrees of freedom (two coordinates and two
momenta), the energy shell has dimensionality three, a quasiperiodic trajectory has
dimensionality two, and a periodic trajectory is undimensional. Separability is de-
termined by the excitation energy ofthe system. When this energy is zero, the system is
static at the Hartree-Fock minimum ; for very small excitations, the system exhibits
uncoupled RPA modes ; for higher energies, these modes might couple non-linearly,
and the system mayno longer be separable. We thereforeexpect to be able to requantize
the system when the excitation energy is "sufficiently small" in the sense of KAM.
One practical way to evaluate the EBK quantization integrals around topologically

independent circuits is by examining a planar section of the trajectory manifold
[Poincard nap aa)] . A point is marked on this plane each time the trajectory pierces it.
If the trajectory is quasiperiodic, the eventual figure traced out is a smooth curve ; if it is
stochastic, the result is a "splatter" . By rotating the coordinates q,, q2, Pi, P2 -' qA, qH,

Pn, PB so that the section plane is defined by qn = constant, then fp - 4 around that
circuit isjust the area ofthe circuit in (qe, pB) space. The surfaces of section must have
reflection symmetry about the q-axis, since time-reversal takes (q, p) -+ (q, -p), and
this transformation cannot affect the global shape ofthe manifold if His time-reversal
invariant. The energy shell has two natural projections, (q,, q2, p,) or (q,, q2, p2) as in fig.
1 ; the torus and section are also shown for each of these projections.

3.2 . QUANTIZATION BY PERIODIC TRAJECTORIES 1,2,10,13,17)

The path integral route to quantization consists of writing the propagator as a
Feynman path integral,

K(q, q' ; T) =JD[q(t),

	

.p(t)]exp (iS[q(t), p(t)]/ht~

S[q(t), P(t)] =fo (p . q
-H)dt.

	

(3.7)

This is also the form of the shell-model propagator given in eqs. (2.13). The quanti-
zation, by first-order stationary phase, consists of finding all periodic classical trajec-
tories such that

T
W = ET+S = f p-dq = 2nh(n+z~

	

(3.8)
0

where E, T, S are the energy, period and action, respectively, of the circuit. For
simplicity, the followingis restricted to thecase of a system with two degrees offreedom,
which has a four-dimensional phase space. The second-order stationary phase approxi-
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mation involves the stability angle v of the trajectory, giving the quantization condition

where v is the non-zero eigenvalue of the stability matrix of the path ; it measures the
frequency of small oscillations about the periodic trajectory and the integers m and n
thus form a complete set of quantum numbers. The classical energy of this trajectory is
an approximation to the quantum eigenenergy . Quantization by periodic trajectories is
therefore seen to be ablend ofSommerfeld-Wilson quantization along the path and an
harmonic approximation transverse to the path.

3 .3 . DISCUSSION

(m+2)v+fp-dq = 2nh(n+j:),

	

(3.9)

At first sight, EBK and periodic trajectory quantization are completely different .
However, Berry andTabor 1 a) have shown that the two are in a sense equivalent, in the
quasiperiodic part of the classical phase-space. They are equivalent in that a stationary
phase approximation to the EBK method produces a sum over periodic trajectories,
which can also be obtained from the path integral formulation. In the quasiperiodic
regime, the trajectory has (non-analytic) constants ofthe motion, the actions obtained
by integration along a circuit on the invariant torus, as in subsect . 3.1 . These together
with the corresponding angle variables are canonical 29) and are a good coordinate
system since the hamiltonian is a function only of the actions . Setting these actions to
2nh(n+Z) gives the semiclassical energy levels . Berry and Tabor wrote the density of
states as a sum of delta-functions at these values, used Poisson's formula to transform
each delta-function to an integral, andinvoked theSPAfor each integral . The result is a
sum over an integer-valued lattice, each point of the lattice representing a periodic
trajectory whose frequencies have the same ratio as the ratio ofthe lattice coordinates.
The same sum over periodic trajectories can be obtained from the quantum ex-

pression TrS(E-H) for the density ofstates . Expressed as a path integral in the action-
angle coordinates, the trace becomes a trivial integration over angles . This reveals the
basic flaw in the analysis of Gutzwiller et al. ") who find the stationary paths to their
SPAfor the trace to be periodic trajectories . However, Helleman and Bountis 26)have
shown that periodic trajectories are dense in the phase-space, so that this SPA is not
justified. Furthermore, there is natural topology to the periodic trajectories (the integer
lattice of Berry and Tabor) which the quantization by periodic trajectories ignores.
On a practical level, Noid and Marcus 27) tried direct quantization by periodic

trajectories, as in (3.8~ of a Henon-Heiles hamiltonian

H = l(pi+qi+p2+q22)+giq2-Aqz (3.10)

They found periodic trajectories by simply adjusting the initial conditions until the
surfaces of section became sets ofpoints instead ofcurves . Numerous spurious energy
levels were found in addition to the expected levels .
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Helleman andBountis 26) used a slightly more systematic approach to the search for
periodic trajectories of a similar system and found families ofthem filling phase-space.
Unfortunately they did not go on to quantize the system . Their method consists of
writing q 1, q2 as a Fourier series. The action, which is the time-integral of the
lagrangian,is thus an explicitfunction ofthese Fouriercoefficients. Hamilton's principle
states that this action is stationary with respect to the Fourier coefficients at a classical
trajectory. Naively, Newton's method can be used to solve these equations . However,
there is a problem in that the second-derivative matrix, which must be invertible for
Newton's method to work, has a zero eigenvalue at the classical trajectory, corre-
sponding to time translation along the periodic trajectory. Helleman and Bountis
add extra constraints to Newton's method to remove this degeneracy, but these
must be carefully tuned to the hamiltonian considered and are not easily generalized .
In addition, matters are further obscured ifmomentum is not proportional to velocity,
since the lagrangian must be constructed from the hamiltonian, which is only implicitly
defined as a function of the coordinates and velocities.

3 .4. THE BIRKHOFF-GUSTAVSON TRANSFORMATION'S )

An analytic method ofsemiclassical quantization is a Taylor series expansion about
the harmonic oscillator (RPA)modesknown as the Birkhoff-Gustavson (BG) transfor-
mation . Without loss of generality the classical hamiltonian can be written

H(q, p) = [, 2Wk(g2+pk)+H<3)(q, p)+H(4)(q, p)+ . . .,

	

(3.11)
k

where H(')(q, p) is a homogeneous polynomial of degree s. The method attempts to
make a canonical transformation to new variables Q, P, such that the hamiltonianHis
a function only ofthe variables Qk +P,Z', which are thus automatically action variables.
The transformation is iterated for successive values of s, reducing cubic, quartic, etc.,
terms in H to the above form . The algebra is straightforward, but extremely tedious.
The BG procedure provides a full set of action variables only ifthe RPA frequencies

co,, are non-resonant ; i.e., if there is not set of integers Uk} with YJ00k = 0. Ifr linearly
independent such resonance conditions exist in a system of n degrees of freedom, the
transformation provides n -r action variables, leaving an r-dimensional problem tobe
quantized by other means.
The power series for energy as a function ofthe actions diverges everywhere 28). This

divergence is caused by resonances arbitrarily close to any set of frequences cok .
However, the usual methods 29) of summing a divergent series can be applied, for
example by taking the sum of the series as far as the term of minimum magnitude.
We tested theBG procedure in a three-dimensional system, using the Henon-Heiles-

type hamiltonian of Noid, Koszykowski and Marcus 30) :

H= J .Z (pk+~kqk)+0.1(glqi -O.lgi+g2q3 -O.lg3)
k=1

(3,12)
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They used co t = 0.7, (o 2 = 1.3, 03 = 1, which are resonant (w t +(02 -2(0 3 = 0) and
calculated energy levels with an extension of the surface of section method . This is
computationally laborious since it essentially involves finding points where the three-
dimensional trajectory touches a line (not just where a two-dimensional trajectory
crosses a line, as in subsect. 3.1) . We implemented the BG method on a computer to
fourth order in the actions and algebraic expressions with some .20000 terms were
generated. Problemswith rounding error were encountered in subtracting large, almost
equal terms. To avoid theresonance, we averaged the series over the neighboring values

TABLE I

Comparison of energy levels for the 3-dimensional Henon-Heiles potential

States are labelled by the three quantum numbers (n,, n Z , n 3 ).

of (0 3 = 0.98, 0.99,1 .01,1 .02 with the same (01, 02 ; for these values, the divergence in the
Taylor series is at a higher order than that which wekept. Thesesemiclassical results are
compared with the exact energies in table 1. The agreement seems reasonable.

4. The SU(3) model

The SU(3) model 31) is an exactly soluble three-level schematic shell model, It is a
generalization of the familiar two-level SU(2) Lipkin-Meshkov-Glick model, whose
semiclassical realization is one-dimensional However, the dimensionality of the
semiclassical limit of the SU(3) model is two, so that the usual WKB quantization is
inapplicable . It therefore forms a non-trivial test of the methods of sect. 3.
The model is defined by N distinguishable particles labelled by an index n which can

occupy three single-particle levels, k = 0, 1, 2, with energies Ek . Furthermore, there is a
two-body interaction, which moves pairs of particles between these levels . The hamil-
tonian is

1

	

12

H = E si,

	

a.ka.k
)
+2 E, Vi,, (~ a.ka.j

)

	

(4.1)
~,1

State Exact Noid et al.
[ref. '°)]

This work
(BG)

RPA
(harmonic)

(0, 0, 0) 1 .494 1 .493 1 .496 1 .500
(l ' 0,0) 2.184 2.185 2 .195 2 .200
(0, 0, 1) 2 .485 2.486 2 .488 2 .500
(0, 1,0) 2.771 2.771 2 .782 2 .800
(2, 0, 0) 2.872 2.873 2 .890 2 .900
(l ' 0, 1) 3 .177 3.177 3 .187 3 .200
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where Vij = Vj;, Vi , = 0. To obtain the complete spectrum of the model, we need
consider for each N only the band of states which are totally symmetric under in-
terchange ofany two particles . For simplicity, we have chosen the parameters go = - e,
E1 = 0, e 2 = e, Vii = V(1 - ó,j), with V > 0.
The exact eigenstates of the model can be obtained by diagonalizatiori H in a basis

which has definite occupation numbers in each level . The number of such states
(partitions ofN into three integers) is of order 2N2 , so the matrix size soon becomes
quite large. Since H only connects states with even differences in occupation numbers,
the calculation can be reduced to four diagonalizations, each of dimensionality

	

SIN2 .
The coherent state representation ofa totally symmetric wave function for the SU(3)

system is

I W>

	

I D7,1 Dz2 exp (zi Y aiano+z2I a2ano)10> 41 (Z1, Z2),
n

H(ß, ß*) = Ne(-1 +Iß112 +21ß212 )

+1 VN(N -1 )[( 1 -1ß112 - 1P21 2)(ßi+ßi 2 +ßz+ßi2 )

+ß1Zß2 +ß1i2 )]

n
(4.2)

where the vacuum is the state with all particles in the lower orbital, and with Dz the
same measure as in (2.2) . The z are independent ofN because we consider only totally
symmetric states. Using the methods of sect . 2 to take the classical limit, we obtain

(4.3)

Amore convenient set of variables can be obtained from the realandimaginary parts
of ß

so that

H(q, P)
Ne

ß.,,/2 = q + iP,

ß* ,.,/2 = q - iP,

_ -1 +lgi(1 - X)+Igz(2 - X)+iPi(1 +X)+IPi(2+X)

+âX[(gi+g2 2- (Pi+P2)-

	

1 - P1)(gi -Pi) - 411g2P1P21 (4.4)

where X = (N - 1)V/s is the dimensionless strength of the interaction . In the classical



limit, the time evolution ofthe system is independent ofthe particle numberN at fixed X,
so that N appears only in the quantization condition
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f

	

p-dq = 2N (n;+4a;) .

	

(4.5)
r+

We identify q as the coordinate and p as the momentum because ofthe behavior of the
coherent-state wave function under time-reversal, viz, ß -. ß*, q -. q, p -+ -p. Further
support for this identification is the fact that p, = pz ;:= 0 implies 4, = 42 = 0.

In fig . 2 are contour plots ofthe "static hamiltonian H(q, p = 0)/Ns . This "potential
energy" exhibits one minimum for 0 <_ X < 1, two minima for 1 < X < 3, and four
minima for X > 3. The minimum value of this potential is the Hartree-Fock ground-
state energy of the system . The locations of the minima and the HF energies are

The frequencies 0,, a0 z of small oscillations about the minimum are N times the RPA
frequencies. The low-lying energy levels are then given by the RPA as

z ~~i
E = EHF+

	

(n,+z1),

	

ni = 0, 1, 2, . . ..

	

(4.7);_, N

1-X z ,

	

4- X z ,

	

X < 1

i

	

3(X+1)(X-3),

	

1 <X < 3

[4
(X2-3+

	

3Xz +9)T,

	

X > 3.

E=-1,

	

1<X<3,

(4.8)

For 1 < X < 3 and X > 3 at sufficiently low energies, the classically allowed region is
split into two or four identical separate regions, respectively. The energies at which
these regions coalesce are the energies of the saddle points of the "potential energy"

2
E = -1- (X

-X

1)2 1

	

E = -1

	

(X
-

	

4_X
) ,	X > 3.

	

(4.9)

q, = 0, qz = 0, E = -1, X < 1,

q,=1-X,
1

qz =0, E=-1-
(X_ 1)z

4X
, 1<X<3,

9i=3, q2-
2
3X

6
, E=-3-1,

X
X>3. (4.6)
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Fig . 2 . Contour plots of the static hamiltonian, H(q, p = 0), for the SU(3) model . (a) X = 0.75, one
minimum ; (b) X = 2, two minima ; (c) X = 10, four minima .

The quantum hamiltonian only connects states with even differences in occupation
numbers, which is reflected in the classical hamiltonian by symmetry about the q t and
q 2 axes. Thus the states of the classical system are labelled by a positive or negative
"parity" for each of the q t , q2 directions . When the classically allowed region is in four
separate pieces, one expects the quantum energy levels to be approximately fourfold
degenerate, similar to the parity doublet of a one-dimensional double well. However,
since the classical approximation cannot reproduce this purely quantum mechanical
effect, the splittings of the exact quantum levels are an indication of the validity of the
classical approximation . For the levels we calculated in this regime (X = 10 and 100)
these splittings were in the third significant figure. It may be possible to calculate these
splittings semiclassically by instanton techniques, letting the action andmomentum be
imaginary 3) or complex 32 ), and calculating trajectories on the "inverted" energy
surface.
We quantized the SU(3) model for three values of X(0.75, 10 and 100) using both the

surfaces of section and the BG method . For the former, Hamilton's equations require
four initial conditions. We chose pl = p2 = 0, and two "RPA actions" such that in the
RPA limit these numbers are the exact actions . These initial conditions make the true
actions asmooth single-valued function ofthe RPAactions . Hamilton's equations were
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integrated by a fifth-order Runge-Kutta procedure in double precision and the trajec-
tory was plotted in (q l , q2) space until it was clear whether or not it was quasiperiodic . A
line wasthen chosen such that the line and its normal defined independent surfaces of
section, as in subsect. 3.1 . Quadratic inverse interpolation was used to calculate the
points where the trajectory cut the section plane. Our procedure is self-checking for
rounding error . since points on a section may be very close in the plane but widely
separated in time . Thus if a section is a smooth curve, even when highly magnified, the
rounding error must be small. The area of the section was measured by reducing the
figure to a single circuit, reflecting half of the points, ordering them, and using
Simpson's rule for unequally spaced points. Fig. 3 illustrates a progression of the
surfaces of section with increasing energy for X = 10 . At low excitation, the system
behaves like a pair of oscillators ; as the energy increases, the torus becomes highly
convoluted ; at still higher energy, the system is stochastic.
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Fig. 3 . Trajectory in q-space (left) and surfaces of section (center and right) for a progression of
excitation energy . (a) Harmonic ; (b) quasiperiodic, measurable by plane surface of section ; (c), (d) quasi-

periodic, unmeasurable by plane surface of section ; (e), (f), stochastic .

From the above procedure we calculated the two actions, and applied the quanti-
zation condition

It

	

2n (p -dq _ 1
N (n,+Z).	(4 .10)

Forboth the X = 10 andX = 100 cases we could find few energy levels, with difficulty,
due to the convolution of the surfaces of section and the rapid transition to stochas-
ticity. The trajectories can be stochastic even when confined to a single minimum and
were always stochastic when the energy was above the lowest saddle energy. For
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X = 0.75, however, the surfaces of section were almost circles even for relatively high
energies, enabling us to find many energy levels . For all three values of X,the upper limit
of energy at which we could quantize was often fixed by the insufficiency of planar
surfaces of section ; polyhedral surfaces could have been used to extendthe procedure to
higher energy, although at the cost of a greater computational complexity .
The BG procedure to quantize the system for all three values of X was used to

generate a Taylor series for the energy to fourth order in the actions . For X = 10 and
X = 100, the same problems as before are evident, which the power series exhibited by
being quickly and strongly divergent. For X = 0.75, however, the BG procedure pro-
vided almost as many levels as did the surface of section approach, though with less
accuracy.
The calculated energy levels are illustrated in figs . 4 and 5 . For ease of comparison, all

exact quantal energies have been shifted by their "zero-point energy" (approximately
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Fig. 4. Energy levels for the SU(3) model N = 60, X = 0.75. There are eight sets of four columns ; each set
corresponds to a particular number n) of oscillator quanta (0-7) while n. increases vertically . The four
columns are : SE, shifted exact levels (to remove zero-point energy); SS, surface of section method ;
BG, Birkhoff-Gustavson method ; RPA. The Hartree-Fuck energy and the saddle energy are marked.
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Fig. 5. Energy levels for SU(3) model, N = 60, X = 10 and X = 100. Each set of four columns is as
in fig . 4. The (shifted) Hartree-Fork and (shifted) saddle energies are marked.

one-half the sum of the RPA frequencies) such that the energy of the shifted exact
ground state is exactly equal to the RPAground state . For X = 0.75, the exact levels can
be easily classified by the two oscillator quantum numbers shown. For X = 10, and
X = 100, though, the system is harmonic only for low excitation energy . We thus
display the"raw" levels in these cases . Table 2 shows the comparison in numerical form
for a few levels .

5. Summary and conclusions

This work has been an attempt to apply semiclassical methods to a nuclear shell-
model hamiltonian. We showed that there are several equivalent ways to derive the
classical hamiltonian system representing a given shell model : the TDHF variational

-22 2 .3

-241 -2.5

-26- -2.7
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TABLE 2
Lowest energy levels for the SU(3) model

States are labelled by the number of oscillator quanta, (n � n2). Missing entries for X = 10, 100 are states
where a corresponding classical trajectory could not be found .

principle using a Thouless state trial wave function, the WKB approximation to the
Schródinger equation for the coherent state wave function, and a path-integral repre-
sentation for the propagator in terms ofcoherent states. All ofthese methods result in a
generally multidimensional ;classical problem which must then be requantized to find
the quantum eigenenergies of the system. This latter is a non-trivial and largely un-
settled problem ofhigh current interest, particularly in regard to intramolecular energy
transfer. Foraschematic three-level shell model, we found that the classical trajectories
evolved from harmonic through quasiperiodic to stochastic as the excitation energy
increased above the Hartree-Fock minimum. Among the methods we investigated to
quantize these trajectories were EBK quantization using surfaces of section, the
Birkhofl-Gustâvson transformation to action-angle variables, and the ordinary har-
monic (RPA) approximation. When the exact quantum level structure was harmonic
(or nearly so) we found that all ofthese semiclassical methods predicted the excitation
energies reasonably accurately. However, in more complicated situations all of these
methods gave poor results and could, in fact, only find the few lowest energy levels.
As apractical tool, semiclassical quantization leaves much to be desired. It is far more

laborious than the RPA yet produces results only when this approximation is already
fairly accurate . Realistic situations involving many single-particle orbitals will certainly
correspond to more complicated classical systems than the two-dimensional one we
have used as our example, and here the situation can only be worse : the surface of
section method is a very arduous proposition even in three dimensions and the com-
puter implementation of the algebra for the Birkhof Gustavson procedure uses pro-

State Shifted exact Surface of section Birkhoff-
Gustavson

RPA
(harmonic)

0.75 (0,0) -0.97904 -0.97879 -0.97881 -0.97904
(0,1) -0.96747 -0.96672 -0.96672 -0.96802
(0,2) -0.95504 -0.95388 -0.95375 -0.95699
(1,0) -0.94794 -0.94681 -0.94751 -0.94814
(1, 1) -0.93611 -0.93519 -0.93518 -0.93712
(1,2) -0.92347 -0.92216 -0.92197 -0.92609

10 (0,0) -3.2446 -3.2407 -3.2407 -3.2446
(0,1) -3.0807 -3.0883 -3.0731
(l, 0) -3.0410 -3.0484 -3.0488 -3.0386

100 (0,0) -31 .419 -31 .364 -31 .376 -31 .419
(0,1) -29.549 -29.659 -29.652 -29.512
(I, 0) -29.511 -29.514 -29.478
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digious amounts oftime for more than three or four dimensions . Moreover, it is difficult
to find periodic solutions to an arbitrary hamiltonian in even two dimensions .
Of more basic interest, we have shown that these semiclassical methods, while

derived from quantum mechanics, appear to have structure not present therein, such as
stochasticity and entropy . Their connection with the properties of the exact quantum
system and the insight that it might offer into nuclear problems seems a particularly
intriguing area for future study.

We would like to thank Jean-Paul Blaizot, Yoram Alhassid, Jorgen Randrup, Alex
Dieperink, and Onno van Roosmalen for ideas and discussions, and to thank the
Weizmann Institute of Science for generous hospitality andsupport during completion
ofthis work at the Einstein Centre for Theoretical Physics.

References
1) S. Levit, Phys . Rev. C21 (1980) 1594 ;

S. Levit, J. W. Negele and Z. Paltiel, Phys . Rev. C21(19ß0) 1603
2) H. Reinhardt, Nucl. Phys. A331 (1979) 353 ; A346 (1980) 1 ;

H. Kleinert, Phys. Lett . 69B (1977) 9
3) A. K. Kerman and S. Levit, Phys . Rev. C24 (1981) 1029
4) S. Levit, J. W. Negele and Z. Paltiel, Phys . Rev. C22 (1980) 1979
5) Y. Alhassid and S. E. Koonin, Phys . Rev. C23 (1981) 1590 ;
Y. Alhassid, B . Muller and S. E. Koonin, Phys . Rev. C23 (1981) 487 ;
K. R. S. Devi and S. E. Koonin, Phys . Rev. Lett. 47 (1981) 27

6) See, for example, A. Messiah, Quantum mechanics (Wiley, NewYork, 1968) p. 241
7) K. -K . Kan, J. J . Griffin, P. C. Lichtner and M. Dworzecka, Nucl. Phys . A332 (1979) 109
8) R. Shankar, Phys . Rev. Lett . 45 (1980) 1088
9) A. E. L. Dieperink and O. Scholten, Nucl. Phys . A346 (1980) 125 ;
D. H. Feng, R. Gilmore and S. R. Deans, Phys . Rev. C23 (1981) 1254 ;
O. S. van Roosmalen and A. E. L. Dieperink, Phys . Lett . 10ÚB (1981) 299; University of Groningen
Preprint KVI-325

10) See, for example, R. Rajaraman, Phys. Reports 21C (1975) 228;
R. F. Dashen, B . Hasslacher andA. Neveu, Phys . Rev. D10 (1974) 4114

11) Stochastic behavior in classical and quantum hamiltonian systems, ed . G. Casati and J. Ford, Proc .
Volta Memorial Conf. Como, Italy, 1977 (Springer, Berlin, 1979)

12) Nonlinear dynamics, ed ., R. H. G. Helleman, Annals ofthe New York Academy ofSciences, vol . 357
(NY Academy of Sciences, NY, 1980);
Y. Weissman and J. Jortner, Phys . Lett. 93A (1981) 55 ;
R. Koslolfand S. A. Rice, J. Chem . Phys. 61 (1981) 1340

13) J. P. Blaizot andH. Orland, Phys. Rev. C24 (1981) 1740
14) J. B. Keller, Ann. ofPhys . 4 (1958) 180
15) A. Einstein, Verhand. Deut . Phys . Ges. 19 (1917) 82 ;
M. L. Brillouin, J. de Phys ., ser. 6, 7 (1926) 353;
K. S. Sorbie andN. C. Handy, Mol. Phys . 32 (1976) .1327

16) V. Maslov, Thdorie des perturbations (Dunod, Paris, 1972)
17) M. C. Gutzwiller, J. Math . Phys. 12 (1971) 343; Phys . Rev. Lett. 45 (1980) 150; ref. "), p. 316 ;
W. H. Miller, J. Chem Phys . 63 (1974) 996;
S. E. Koonin, in Nuclear theory 1981, ed., G. Bortsch Proc . of the nuclear theory Summer Workshop,
Santa Barbara, California, 1981 (World Scientific, Singapore, 1982)



92

	

R. D. Williams, S. E. Koonin / Semiclassical quantization

18) M. V. Berry and M. Tabor, Proc . Roy. Soc. A349 (1976) 101 ; J. of Phys. A10 (1977) 371 ;
M. Tabor, ref. "), p. 293

19) G. D. Birkhoff, Dynamical systems (Am. Math . Soc., New York, 1966) vol. IX ;
G. F. Gustavson, Astron . J . 71 (1966) 670 ;
R. T. Swimm and J. B. Delos, J. Chem . Phys . 71 (1979) 1706

20) H. Goldstein, Classical mechanics (Addison-Wesley, Reading, Mass, 1980)
21) M. V. Berry, Proc . Roy. Soc. A287 (1977) 1343
22) I. Percival, J. ofPhys . B6 (1973) L229
23) A. N. Kolmogorov, Doklady Akad. Nauk 93 (1953) 763, [English translation in ref. "), p. 51];

V. I . Arnol'd, Izv . Akad . Nauk . SSSR(ser. mat.) 25 (1961) 21 ; Usp. Mat. Nauk 18 (1963) 81 ;18 (1963)
13 ;
J . Moser, Stable and random motions in dynamcal systems (Princeton University Press, Princeton,
1973); Am . Math . Soc. Mem. 81 (1968) 1 ; SIAM Review 8 (1966) 145

24) W. Eastes and R. A. Marcus, J. Chem. Phys. 61 (1974) 4301
25) V. I . Arnol'd and A. Avez, Ergodic problems of classical mechanics (Benjamin, New York, 1968)

appendix 26
26) R. H. G. Heileman and T. Bountis, ref. "), p. 353 ;

R. H. G. Heileman, in Topics in nonlinear dynamics, ed., S. Jorna, American InstituteofPhysics Conf.
Proceedings, vol . 46 (AIP, NewYork, 1978)

27) W. Eastes and R. A. Marcus, J. Chem . Phys. 61 (1974) 4301 ;
D. W. Noid and R. A. Marcus, J. Chem. Phys . 62 (1975) 2119

28) C. L. Siegel, Ann. Math . 42 (1941) 806; Math . Ann. 128 (1945) 44 ; Vorlesungen uber
Himmeshmechanik (Springer, Berlin, 1957)

29) E. T. Copson, Asymptotic expansions (Cambridge University Press, 1965)
30) D. W. Noid, M. L. Koszykowski and R. A. Marcus, J. Chem . Phys. 73 (1980) 391
31) B. A. Flanders, Ph . D. Thesis, California Institute ofTechnology, 1981 (unpublished);

S. Y. Li, A. Klein and R. M. Dreizler, J. Math . Phys . 11 (1970) 975;
G. Holzworth andT. Yukawa, Nucl. Phys . A219 (1974) 125

32) A. Patrascioiu, Phys. Rev. D24 (1981) 496


