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Abstract. We study the zero-temperature equation of state of isospin-symmetric nuclear matter beiow 

saturation density by minimizing the energy of the nucleons in a periodic cubic cell at each mean 

density. We take the energy per nucleon to be the Thomas-Fermi approximation to the Skyrme 
III functional and include the Coulomb energy. We find several phase transitions between different 

topologies of matter, going from spheres to rods to slabs to tubes to bubbles with increasing density, 

and discuss their implications for models of supernova core collapse. 

1. Introduction 

Uniform nuclear matter is unstable at a density somewhat below saturation; i.e. 

when the density derivative of the pressure becomes negative ‘). This occurs at a 

density of about 0.095 nucleons fme3 (1.6 X lOI g cmV3), which is 65% of the 

saturation density. The thermodynamically favored configuration (of lower free 

energy) is then a mixture of saturated matter and vacuum, in much the same way 

that the homogeneity of a fluid is disrupted when its density is intermediate between 

that of the liquid and gas phases. In this paper, we investigate the structure of this 

mixture, assuming a uniform admixture of electrons for overall electrical neutrality. 

The structure is determined by competition between the short-range surface force 

and the long-range Coulomb force: the surface energy is reduced with aggregation 

(because the ratio of surface area to volume is reduced) while the Coulomb energy 

is reduced by dispersion of the matter (due to the inter-proton repulsion). The 

equation of state of matter in this density regime thus depends on the equilibrium 

configuration of the interface between the nuclear matter and the vacuum. 

In addition to its intrinsic interest, this sub-saturation density regime exists briefly 

in a collapsing stellar core during the formation of a type II supernova 2-5), and the 

strength - or even existence - of the subsequent shock wave depends sensitively 

upon the equation of state. Just before collapse, the central iron core is supported 

against gravity by the pressure of the electron gas, and, when collapse starts, the 

central density increases. This causes the protons to capture electrons, further 

reducing the available electron pressure, and so creating a positive feedback which 

drives the catastrophic collapse. It is the stiffness of the nuclear equation of state 

at saturation density which halts the collapse and causes a bounce of the core. The 
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rebounding core meets the infalling outer layers of the star, forming a shock and 
expelling material to create an expanding nebula. The formation of a strong shock 
is aided by the homologous property of the collapsing core (i.e. the inward velocity 
of the matter being proportional to its radius). Any phase transition of the collapsing 
matter will absorb heat, disrupt the homology, and so weaken the subsequent shock. 
Although the latent heat associated with such transitions might be small, the shock 
formation is delicate enough that they may be relevant and therefore it is possible 
that other physical mechanisms will be required to explain the observed properties 
of supernovae “). For densities below about 35% of saturation, the nuclear pressure 
is much smaller than the electron pressure, while above about 75% of saturation 
the nuclear equation of state is that of uniform matter. However, between these two 
limits it is essential to determine the equation of state as accurately as is possible. 

To date, calculations of nuclear matter in this regime have assumed either spherical 
nuclei, spherical bubbles immersed in uniform nuclear matter, or uniform matter, 
and have been done using the compressible liquid drop model ‘,*), or the Hartree- 
Fock method 9*10), or the extensive treatment of Lamb, Lattimer, Pethick and 
Ravenhall I’). However, it has been shown by Ravenhall, Pethick and Wilson I’) 
that, with increasing density, there are other transitions - from spherical nuclei to 
a rod-like geometry, to slabs, to tubes (cylindrical bubbles), to spherical bubbles, 
and then to uniform matter. Their calculation was at zero temperature, with equal 
numbers of protons and neutrons, and used a simple surface energy for the interface 
separating the uniform saturated nuclear matter from vacuum. The total energy is 
then minimized with respect to central density and nuclear size for fixed mean 
density. The surface shape was modeled in the Wigner-Seitz approximation, so that 
a spherical nucleus was surrounded by a spherical surface of zero electrostatic 
potential and a cylindrical nucleus by a cylindrical zero equipotential. There was 
thus only one independent coordinate_in 1, 2, or 3 dimensions, and the surface 
shape was a priori limited to one of the six possibilities above. Ravenhall et al. 
therefore could not examine the stability of these shapes under symmetry breaking 
or the nature of the transitions between them, and the set of possible surfaces was 
restricted to those with a convenient accompanying coordinate system. Ravenhall 
et al. interpolated between these shapes by using a non-integral dimensionality for 
the Wigner-Seitz cell, minimizing with respect to this dimensionality; unfortunately 
physical relevance of this interpolation is not explained. 

In this paper we improve on the calculation of Ravenhall et al. by allowing the 
nuclear matter to assume an arbitrary configuration within the unit cell. We describe 
the matter by considering the local number density of nucleons at each site of a 
periodic cubic lattice filling the unit cell; the free energy (or equivalently, at zero 
temperature, the thermodynamic potential) is then reduced by a relaxation process 
until a local minimum is achieved. The lattice is fine enough to reproduce the nuclear 
surface accurately and the system is free to adopt its lowest energy within the 
constraint of cubic periodicity. For this exploratory study we have worked in the 
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zero-temperature limit and have taken the proton and neutron densities to be equal. 
[This last assumption means that there is no neutron gas surrounding the nuclei “).I 
The use of a cubic unit cell is purely for computational convenience, and other 
geometries such as face- or body-centered cubic would be equally valid. Relaxation 
of all these assumptions is straightforward, although at the expense of increased 
computation. 

2. Description of the model 

2.1. THE ENERGY FUNCTIONAL 

We can safely assume that the electrons decouple from the nuclear matter, except 
in the sense of providing overall charge neutrality. This is so because, for the densities 
of interest, the Fermi energy of the electron gas is much larger than variations in 
the Coulomb potential across the unit cell. In the usual linearization of the Thomas- 
Fermi description the electron screening length is given by 

h2Wr2( p>) -“3 
me2 1 “’ ~ 1 5. fm , (1) 

where m is the electron mass, and (p) is the mean density. Since this is much larger 
than any of the nuclear length scales involved, the electron gas provides an essentially 
uniform background of negative charge. 

Our calculations consider all possible density configurations which have periodic 
cubic symmetry throughout all of space. We take the energy functional to be the 
Skyrme functional 14) in the zero temperature Thomas-Fermi approximation 15) plus 
the Coulomb energy, simplifying to equal proton and neutron densities. The internal. 
energy density U is then the sum of bulk ( EB), surface (Es) and Coulomb (EC) 
energy densities; the bulk and surface energies are those of the Skyrme interaction, 
and, as we neglect the Coulomb exchange energy 15), the Coulomb energy is just 
the classical expression. The thermodynamic potential per unit volume at zero 
temperature is then 

n = U-/L(p)=E*+Es+Eo-~(P) 

= L-3 p(r)[e(p(r)) -PI+ 4Vdr)12+f V(r)&(r) d3r, (2) 

where p is the chemical potential, and ( - * *) denotes a spatial average. The integral 
is over the volume of the cubic cell of side L, and the Coulomb energy expression 
uses the proton density pP = kp and the electrostatic potential 

V(r) =fe2 I dr’)--(p) d3rr 

lr-r’l * (3) 

The (p) term above comes from the uniform electron charge density, and note that 
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the integral (3) is over all space, not just a single unit cell. The energy per nucleon 
is the Thomas-Fermi approximation to the Skyrme III functional, 

I 

2 

e(p)=~r,p+~~t,p2+~(~~2)2’3p5’3 &(3r,+5t2)p+& 
3 

, (4) 

with f0 = -1128.75 MeV * fm3, t, = 395.0 MeV * fm5, t2 = -95.0 MeV * fm’, t, = 

14000 MeV - fm6, h*/ M = 41.47 MeV * fm*, and we have used the zero-temperature 
Thomas-Fermi expression for the kinetic energy density. Finally, the coefficient of 
the ]Vp(* term is 

as=&(9t,-5t2)=62.97MeV*fm5. (5) 

An equilibrium state of the system is one which minimizes the thermodynamic 
potential functional with respect to the density function. The change in R for a 
change in the density Sp (r) is 

sn = L-3 
I 

[E’(P)-p-2~V*p+$V(r)]bp(r)d~r. (6) 

where we have introduced s(p) = pe( p), and s’(p) = de/dp. For a fixed p., there 
may of course be several equilibrium configurations. All of them satisfy 

2asV*p-fV(r)-s’(p)+p=O. (7) 

We have not as yet defined EB, Es, and E,, but only their sum. The Coulomb 
energy is the third term in the integrand of (2), and EB, Es can be obtained as 
follows. Consider a plane interface between saturated matter, with nucleon number 
density ps, with no Coulomb interaction, and with the z-axis normal to the interface. 
Then (7) can be integrated, 

where K is an integration constant. For z 4 0 or z P 0, p + ps or p + 0, so 

-5 e(p)-a@)'dz=yl pdz. (9) 

The right side is the bulk energy EB, since it is the energy per nucleon at saturation 
times the number of nucleons. We conclude that 

EB= e(p)-~y~]Vp]*d~r, 
I 

Es = 
I 

2&‘p]* d3r. (10) 
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2.2. ANALYTIC ESTIMATES 

We expect that solutions of (7) are characterized by regions of saturation density 
and vacuum, separated by an interface whose area is proportional to the surface 
energy. An analytic estimate can be obtained, following Ravenhall, Pethick and 
Wilson ‘*), by finding the lowest energy of a set of simple shapes within the cubic 
cell with periodic boundary conditions. We take this set to be the sphere, rod, slab, 
tubular bubble, and spherical bubble, and the density to be either zero or saturation 
density, ps = 0.145 fmm3. Let u = (p)/p, be the fraction of the unit cell filled with 
saturated nuclear matter, e(PJ the energy per nucleon of saturated matter, and d 

the “dimensionality” of the phase (d = 3 for spheres, d = 2 for rods, and d = 1 for 
slabs). The surface energy density is then Es = uad/R, where o is the surface energy 
and R the radius of the shape (defined below). The bulk energy density is Es= 

up,e( p,) and the Coulomb energy density is 

where, for spheres, 

(11) 

41rR~ 
u=x, 

for rods, 

.RR2 
u=2, 

L 
f2(u) =_& 1 Jf(2$jRIL) , 

KEz*,K#o 

(12) 

(13) 

and for slabs, 

u=R/L, f,(u>=(l-u)*/3u. (14) 

Here, J, , j, are regular cylindrical and spherical Bessel functions, respectively, and 
the sums in (12) and (13) are over all non-zero triples or pairs of integers, respectively. 
Similar expressions can be derived for the bubble and tube configurations. We then 
minimize U with respect to R, and take the phase with the lowest U to obtain the 
thermodynamically favored configuration for a given (p). This minimization can be 
done immediately since the surface energy is proportional to R-‘, and the Coulomb 
energy density is proportional to R*. Thus R3 = ud/n( p>*e*&(u), L is determined 
from R and u, and Es = 2E,. The chemical potential p is then d U/d( p), and the 
nuclear pressure is p(p) - U. In our calculations we adopt u = 1.096 MeV . fm-*, 
the value associated with the Skyrme interaction we use 16). 

2.3. DISCRETIZATION AND RELAXATION 

We now consider the numerical solution of the non-linear integral-differential 
equation (7). We divide the periodic cubic cell of size L into N3 small cubic cells 
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labelled by the integer vector i E Z3. The finite-difference expressions for the energy 
densities in terms of the number density pi at i are then 

&+fEs= iv?C &(Pj), (15) 
I 

E~=~e2N-4L2~~~(p~-(p))~(pj-(~))~i~j~-’, 
i j 

(17) 

where i’ represents a nearest-neighbor of i, and i,j are integer vectors, i ranging 
over the N3 lattice points, j unrestricted. Minimizing the energy with respect to L 
at equilibrium shows immediately the virial theorem Es = 2Eo, since the exponents 
of L in (16) and (17) are equal and of opposite signs. This result is in agreement 
with the analytic model above and ref. 12). The pressure is the sum of the electron 
pressure i($1~~)“~hc( p)4’3 and the nuclear pressure p(p) - U. 

The equation to be solved is then the unite-different analogue of (7), 

N3h2 an 
---=Q=Qi-pi-S(pi), 

12&s api 
where 

WW 

(18b) 

Here, oi is the average density of the six nearest neighbors of i, & is the Coulomb 
potential at i, and h = L/N is the lattice spacing. 

To solve (18) iteratively, we could make an initial guess for the solution and then 
use successive relaxation, in which the change in pi is proportional to the right side 
of (lsa), so that the change in 0 is negative definite and the system moves toward 
a local minimum. [This process is also called the imaginary time step method “)_I 
The relaxation step would then be to set pi equal to the average of its neighbors, 
ai, with corrections of order h2; i.e. the Gauss-Seidel method of relaxation. However, 
there are two problems in applying this method to the present problem. First, it is 
possible for the density at a point to be unphysically negative, requiring that an 
artificial cutoff be imposed at zero density. More importantly, it assumes that h is 
small compared to the nuclear surface thickness. When h is comparable to this 
thickness, as we would like for computational efficiency, then S( pi) is comparable 
to pi and it is better to solve (18a) for pi directly. This can be accomplished with a 
table lookup: for a given Q there is a single solution p of the equation p + S(p) = Q. 

Notice that Qi is only weakly dependent on pi. Thus we no longer have to assume 
that Qi - S( pi) is weakly dependent on pi, which is true only for small h. The 
problem of negative density is also eliminated, since the solution table p(Q) is 
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smooth and never negative. Thus our relaxation step is to cycle through the lattice 
and solve (18a) at each site, replacing pi by the solution. The fact that (18a) should 
have a unique solution places a limit on the lattice spacing. We need the right side 
of (18) to be monotonic in p, so that its derivative must be greater than zero (for a 
unique solution), implying h2< -12as/min a”(p), or h s 1.4 fm. This is an upper 
limit, and we found that h =G 1 fm was the largest reasonable value we could use. 

We found that, just as with the Gauss-Seidel method, our direct solution method 
was greatly improved by over-relaxation I’). It is well known that the Gauss-Seidel 
method can be made an order of magnitude more efficient by over-relaxation: instead 

ofthestepp~p,,,,usep~wp,,,+‘(l-w)Pold, where w is unity for Gauss-Seidel, 
and optimally between 1 and 2. We found empirically that a value of w between 
1.55 and 1.6 was optimal. 

For the interesting (non-uniform) solutions of (7), the thermodynamic potential 
is a minimum with respect to each pi for constant (p), but a maximum with respect 
to (p). Thus, the only energy minima are the uninteresting ones consisting of uniform 
saturated matter and uniform vacuum. To demonstrate this we take the space average 
of the stationarity equation (7) to obtain p = (s’(p)). Elementary thermodynamic 
relations imply that 

a20 ap a(Er> 
a(P>'=a(a(p)' (19) 

Since c’(p) is monotonically decreasing in the intermediate density range, 
a’R/a( p)’ < 0, demonstrating instability. We therefore use a more “active”, quadratic 
constraint and consider the functional 

fir= U+A(p)((p)-P), (20) 

with A and p to be chosen. The stationarity condition for 0’ is then modified to 

2asV2p-&V(r)-s’(p)-h(2(p)-p)=O. (21) 

When the relaxation has converged and (21) is satisfied, the chemical potential is 
given by p = -A (2( p) - p). With this constraint the modified thermodynamic poten- 
tial R’ is now a minimum with respect to any variation of the density field, as long 
as 2A > a~/@ p); if A becomes too large, though, the numerical method develops 
an odd-even instability. We used A = 300 MeV - fmP3 for most of the calculations, 
except in the cases of the smallest spheres and the smallest bubbles, when a much 
stronger constraint (large A) is necessary to keep the system from uninteresting 
uniformity. 

The above arguments can be applied straightforwardly for a higher-order approxi- 
mation to the second derivative of p, so that V2 is a five-point instead of a three-point 
finite-difference expression: 
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with the obvious notation. The only difference in the relaxation is that the average 
ai is now a weighted mean of 12 neighboring points, and the expression 12~ in 
(18) becomes 15aa. We used the five-point expression for the calculations, both for 
the stationarity condition (7) and for the Coulomb potential, and also in the 
calculation of the surface energy. 

One might hope to avoid the exact calculation of the Coulomb potential at each 
step by simultaneously relaxing the Poisson equation with the density. However the 
natural rates for these two relaxations are very different because of disparate strengths 
of the nuclear and Coulomb forces; one would have to relax the Coulomb potential 
-35 times as often as the density. It is therefore better to use fast Fourier transform 
methods to evaluate the Coulomb potential exactly before each density relaxation. 
The computation is then most efficient if the lattice size N is a power of two, and 
we used a 323 lattice for our computations. With a maximum allowable spacing of 
-1 fm, the maximum cell size is then -32 fm. 

One vital check of the relaxation algorithm is that the thermodynamic potential 
decrease monotonically, which it did in our single precision calculation to five 
significant figures. We also checked the evaluation of the Coulomb energy by 
comparing it with the analytic results for sharp-surface configurations (12)-( 14), 
and found equality to within discretization error. A further check was that the 
surface energy of converged spherical configurations agree with that derived from 
the surface tension of the Skyrme functional. We also checked that the internal 
energy is indeed minimized with respect to L when Es = 2E,, and thereafter used 
the ratio Es/E, to adjust L until the ratio was 2. Thus, the convergence process 
was as follows: relax with fixed L until the chemical potential has been constant 
(within 10m5) for 30 iterations, and then, if Es/2Ec is not unity (to within 10p4), 
multiply L by (Es/2EC)0.23, and relax again (the value 0.23 was empirically deter- 
mined). We started the relaxation either with a lattice of uncorrelated random 
densities, uniformly distributed between zero and saturation density or in a smooth 
surface (thickness= 1 fm) realization of one of the phases (sphere, rod, slab, tube, 
bubble) discussed in the model of subsect. 2.2. 

The computational effort required is quite substantial due to the different magni- 
tudes of the nuclear force (which creates the surface) and the Coulomb force (which 
arranges the nuclear matter globally). Within ten or so iterations a random start 
polarized into regions of vacuum or saturation density, but it took several hundred 
iterations for the chemical potential to stabilize. On a VAX 1 l/750 with floating-point 
accelerator the 323 lattice took about 40 s of CPU time per iteration. 

3. Results and discussion 

In fig. 1 we show the quantity u = U + 1 l(p)+ 35( p)* as a function of (p), where 
(p) is in frnp3 and U in MeV * fmp3. We plot u instead of U because the energy 
differences between the phases are quite small compared to the total internal energy. 
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.05 

Fig. 1. The adjusted internal energy 0 of nuclear matter, as a function of the mean density (p). Plotted 
symbols show the results of indi~du~ calculations, connected by a solid line. The the~odynamicaIty 

favored phase is shown by a heavy line and the results of the analytic model by a chained line. 

In this and subsequent figures we use the notation of ref. ‘*): 3N for three- 
dimensional nuclei (spheres), 2N for two-dimensional nuclei (rods), 1 MB for alter- 
nating slabs of matter and vacuum, 2B for two-dimensional bubbles (tubes), and 
3B for three-dimensional bubbles. We have also found a phase “cross”, an intermedi- 
ate between 2N and lNB, which is the slab configuration with regular holes, like 
a stack of wire mesh. By increasing the mean density adiabatically, the cross phase 
changes to the 1NB phase, so that its energy coincides with that curve. This cross 
phase has minimum energy for a small range of (p) near 0.04fmT3, but would be 
washed out easily by a finite temperature. The the~odynami~lly favored phase, 
with the minimum u, is shown with a heavy line. 

Also shown in fig. 1 are the corresponding results from the model subsect. 2.2, 
shown with a chained line; the internal energy is greater for the model because the 
variational space is considerably more restricted and because it treats the surface 
poorly. The analytic model has no 3B phase and barely has a 2B phase. This is 
because the model assumes that the nuclear matter density can be only one fixed 
value, saturation density, and a better treatment, minimizing also with respect to 
the nuclear matter density, would demonstrate these phases too, as in ref. I*). The 
density at which dP/d( p) = ‘0 for the uniform phase, at (p} = 0.9745 fmS3, is shown 
with a vertical arrow. Above this density, uniform matter is metastable. That is, it 
is stable with respect to small perturbations, but is unstable with respect to finite 
perturbations until the density exceeds 0.1151 fmm3, when ‘the 3B phase ends. 
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TABLE 1 

Phase transitions of nuclear matter in the sub-saturation regime, with 
critical density, pressure and chemical potential discontinuities, and the 
pressure of the mixture by Maxwell construction (the results of the analytic 

model of subsect. 2.2 are shown in parentheses) 

Phase 
transition 

3N-2N 
(3N-2N) 

ZN-1NB 
(2N-1 NB) 

INB-2B 
(INB-2B) 

2B-38 
3B-U 

(2B-U) 

[fn!-sl [MeV%‘] 

0.0229 -0.003 
(0.0224) (-0.006) 

0.0423 +0.033 
(0.0465) (-0.032) 

0.0842 -0.16 
(0.0990) (-0.07) 

0.1026 -0.12 
0.1151 -0.37 

(0.1023) (-0.42) 

P. 
[F%‘j [MeV?n3] 

-0.1 0.39 
(-0.3) 

+0.8 
(-0.7) 

-2.1 2.05 
(-0.7) 

-1.5 2.60 
-3.5 2.89 

(-4.1) 

Since dU/d( p) is discontinuous, there are first-order transitions between the 
phases. Table 1 shows the densities at which the phase-transitions occur, together 
with the pressure discontinuity and the discontinuity of p. Also shown in parentheses 
is the same information for the model of subsect. 2.2. Of course, the phase transitions 
are not physical discontinuities of the pressure. On the line connecting two phases, 
the physical system is a mixture of the two phases, and the functional form of this 
connecting line is obtained from a Maxwell construction 19), so that the total pressure 
is constant for the mixture. Thus P + P, = Pmix, where Pmix is a constant from the 
construction, and P, is the electron pressure. The fifth column of table 1 shows Pmix 
for all the phase transitions except 2N- 1 NB, in which the pressure change is positive 
and the Maxwell construction does not apply. 

Fig. 2 shows the cell size L which minimizes the internal energy. There is qualitative 
agreement with the analytic model, shown by a chained line. The cell size for the 
cross configuration is also shown; at higher density it changes to the 1NB configur- 
ation, but with the slabs tilted diagonally, so that the cell size is greater by a factor 
of A. 

Fig. 3 shows our results for the chemical potential. There is qualitative agreement 
with the analytic model, shown with a chained line, but the discontinuities’are 
greater. Fig. 4 shows the nuclear specific pressure, P/(p): the results of the model 
calculation (chained), and the specific pressure for the uniform phase; the heavy 
line is the thermodynamically favored pressure. Figs. 3 and 4 contain some numerical 
fluctuations because the quantities plotted are differences between much larger 
numbers and because there is no unambiguous convergence criterion for the relaxa- 
tion process. The adiabatic change from the cross phase to the 1 NB phase is shown, 
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I I 

0.05 0.10 

Ipl(fm-3) 

Fig. 4. The nuclear specific pressure P/(p) as a function of(p). The notation is as in fig. 1. 

with the very negative pressures at around 0.07 fmP3 caused by the system being in 
a “wrong” (metastable) phase. 

Fig. 5 shows the distribution of nuclear matter within the periodic unit cell for 
four mean densities. Each set of eight panels corresponds to one density value, and 
each of the eight panels is a contour plot of the local nuclear density. The two 
coordinates of each contour plot vary from 0 to L. The third coordinate is constant 
for each panel and assumes eight equally spaced values from 0 to L for each of the 
eight panels. The shaded regions of the plots have p > 0.1 fmb3. The first density 
value, 0.039 fmP3, is in the cross phase, the next two are intermediate densities in 
the adiabatic change to the fourth plot, which is the diagonally slanted 1 NB phase, 
at mean density 0.082 fmv3. For the panel at density 0.058 fm-‘, the system is exactly 
balanced between the two phases, as can be seen by the double-valued density of 
the nuclear matter, which is why the pressure is so negative (P/p = -3.4 MeV - fm’) 
for that configuration. 

The data in the first panel of fig. 5 result from relaxing an initial lattice of random 
densities; the other panels were obtained from the relaxed configuration by 
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(p) = 0.058 (p) =0.062 (p> =0.082 

Fig. 5, The nuclear density within the cubic cell for four values of mean density (given in fmm3) 
corresponding to the adiabatic change from the cross phase to the INB phase. Each column is eight 
contour plots, being equally spaced slices from the unit cell. The cubic unit ceil has sides of length A, 
shown in fig. 2. Note the periodicity of each plot, and also the periodicity from the top to the bottom 

of each column. 
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increasing the mean density in small increments. Most of the other data in the figures 

result from relaxing a well-ordered start derived from the analytic model, with small 

(10%) random density fluctuations superimposed. These were added so that the 

system could break symmetries to reduce its energy, but we found that this did not 

happen. For example, even near the 3N-2N transition, the 3N phase is spherical, 

not a prolate ellipsoid, and the 2N phase has a circular, not elliptical cross section. 

Each phase seems to have maximum symmetry whenever it is the thermodynamic 

phase, although outside this range there are noticeable effects of the artificial cubic 

symmetry. 

4. Conclusions 

In this exploratory study, we have shown that nuclear matter below saturation 

density undergoes several first-order phase transitions, with the pressure discon- 

tinuities somewhat greater than has been thought previously. This would tend to 

disrupt the homologous collapse and weaken the subsequent shock. For densities 

relevant to stellar collapse (0.09 fme3 S ( p) s 0.12 fmw3) the pressure exceeds that 

of a simple analytical model, by about 0.1 MeV . fme3 . Although the electron pressure 

is about 2.8 MeV - fmp3 at a density of 0.1 fmm3, the formation of a strong shock is 

so dependent upon the equation of state that this small difference may be important. 

An increase of pressure acts against gravity to slow the collapse, causing a greater 

infall of material from the mantle, increasing the radius at which the shock forms, 

and so weakening the shock. 

This work has been an exploratory study of sub-saturation nuclear matter. Possible 

direct extension would be to study this density regime at finite temperature, with 

unequal numbers of neutrons and protons, and with different phenomenological 

forces. The technology we have developed could be applied straightforwardly to 

such calculations. Another possible extension is the expansion of the variational 

space to allow separate proton and neutron densities or to improve on the Thomas- 

Fermi approximation for the kinetic energy density 16). We have shown that the 

simple phases (sphere, rod, slab, tube, bubble) are good descriptions of nuclear 

matter in certain density ranges. It would therefore be interesting to calculate density 

profiles with one radial coordinate, and variable “dimensionality” 12) using the 

Hartree-Fock and Wigner-Seitz approximations. 

The major computational effort of our approach is in performing fast Fourier 

transforms to calculate the Coulomb potential and many relaxation steps are needed 

because of the disparity between the strengths of the nuclear and Coulomb forces. 

In addition, the mesh must be fine enough to resolve the nuclear surface for an 

accurate evaluation of the surface energy. The maximum cell size we used was 

32 fm, which certainly cannot be considered large compared to nuclear sizes. Using 

a 643 mesh would help, and indeed is feasible, but the computational effort would 

be quite large. One approximation worthy of further investigation is to represent 
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only the location of the nuclear surface, rather than the entire density field, perhaps 

by a flexible shape parametrization. Inside the shape would be a uniform density, 

determined by minimization of the internal energy; the volume, surface area, and 

Coulomb potential can then be expressed as surface integrals *‘). 

This work was supported in part by the National Science Foundation, grants 

PHY82- 15500 and PHY82-07332. 
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