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ABSTRACT 
We have calculated the ratio of bound-state to continuum ß-decay of the potential cosmochronometer 

187Re using Dirac wavefunctions in a Thomas-Fermi atomic potential, including exchange corrections. We 
found < 1 % bound-state decay for the neutral atom. This differs from a previous calculation using hydrogenic 
wavefunctions (58%), and from a comparison of published laboratory and geochemical measurements 
(53% ±35%). 
Subject headings: abundances — nuclear reactions — nucleosynthesis — transition probabilities 

I. INTRODUCTION 

The half-life of the low-energy (2.64 keV) ß-decay of 187Re to 187Os is of critical importance in the application of the Re/Os 
chronology (Clayton 1964; Woosley and Fowler 1979) to the determination of the duration of r-process nucleosynthesis in the 
Galaxy prior to the formation of the solar system. The value of the half-life is currently a matter of some controversy, namely that 
involving the ratio of bound-state to continuum ß-decay for 187Re. By this we mean the fraction of decays in which the final Os 
atom is neutral, rather than being positively charged, as would be the case if the ß-ray were emitted into the continuum. 

The most recent geochemical determination of the half-life of the natural /Tdecay of 187Re was performed by Luck and Allègre 
(1983) on several iron meteorites and on the metallic phases of chondrites and yielded 45.6 ± 1.2 Gyr. This determination agrees 
well with the value 43 ± 5 Gyr measured in molybdenite ores by Hirt et al (1963), who summarize previous less accurate 
measurements. It is presumed that the geochemical determination involving ratios of the daughter 187Os to the parent 187Re 
measures the combined half-life due to both continuum and bound-state decay. 

Two direct measurements involving the detection of low-energy electrons have been made, and of course these measure only the 
half-life for continuum decay. Brodzinski and Conway (1965) reported the half-life to be 66 ± 13 Gyr, and subsequently Perrone 
(1971) found theoretically a ratio of bound-state to continuum decay of 58% (with considerable uncertainty), which agrees with the 
value 53% ± 35% derivable from the results of Hirt et al and Brodzinski and Conway. 

At the same time as the Brodzinski and Conway work, however, Payne (1965) measured the half-life as 47 + 5 Gyr. When 
combined with the most recent geochemical determination (Luck and Allègre 1983) of 45.6 ± 1.2 Gyr, this implies a bound-state to 
continuum decay ratio of 3% ± 2%. 

In addition to its importance in nucleosynthesis, this low-energy ß decay is the best candidate for measurement of any long-term 
change in the fine-structure constant a (Dyson 1972). The low endpoint energy of the decay is the result of a near cancelation of the 
differences of Coulomb and nuclear energies between rhenium and osmium, so that a fractional change in cc changes the Coulomb 
energy difference, which changes the endpoint energy, and so the half-life. The fractional change in half-life is ~ 18,000 times the 
fractional change in a, so that an accurate knowledge of the geochemical and laboratory half-lives may be relevant here. 

In what follows we report a new theoretical analysis resulting in a value of at most 1% for the ratio of bound-state to continuum 
decay. 

II. CALCULATION 

The ^-transition of neutral atomic 187Re to 187Os has endpoint energy E0 = 2.64 keV and is first-forbidden unique, 5/2 + —► 1/2-. 
Since it is unique, only one nuclear matrix element is involved, and we need only electron wave functions and phase-space 
considerations to calculate the ratio of bound to continuum decay. 

The vector sum of electron and (anti)neutrino angular momenta must be 2, and their parities opposite. The /Ldecay amplitude is 
proportional to each of the lepton wave functions at the nuclear surface, and these are centrifugally suppressed by the factor (pR)z, 
where hp is the lepton momentum, R is the nuclear radius, and / is the orbital angular momentum. Since pR <4 1, we use the normal 
approximation, with /e + lv as small as possible consistent with the selection rules. Thus, one lepton is in a p3/2 state, and the other in 
an s1/2 state. The electron momentum is dominated by the Coulomb contribution, and is ~Ze2/Rc ^ 15 MeV/c, so that the 
neutrino momentum, ~E0/c æ 2.64 keV/c, is much smaller. Thus we expect the dominant contribution to the decay amplitude is 
from e(p2/2\ v(si/2)> rather than v(p3/2l e(s1/2). 

We adopt natural units h = c = me = 1, and write the lepton spinor in the conventional way (Rose 1961), 

(p(r) = ( gÂr)XKm(r) \ 
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where xKm is a two-component spin-spherical harmonic. For a p3/2 state, k = 
radial wave functions gK and fK satisfy the coupled radial Dirac equations, 

2, and for a s1/2 state, k = — 1. The large and small 

Wk _ * - 1 
dr r 

V{r)-]gK 

¿Ok 
dr 

= LW- V(r) + 1]/. 
K 1 

(2) 

gK 

/i = 

where V(r) is zero for the neutrino and is for the electron the sum of the electrostatic potentials of the nucleus and of the atomic 
electrons. 

The continuum decay rate is proportional to the^ value for the transition, given by Gove and Martin (1971), 
ow 
2^2 (wo - W)2\g_^(R)\2dW , (3) 

where W0 is the total endpoint energy 1 + E0, R is the nuclear radius, p = (W2 — 1)1/2 is the electron wavenumber, andi/_2
(V) is the 

large component of the electron final state spinor. This continuum spinor is normalized so that its asymptotic behavior is 

ifW + lV'2 r 
0K cos tPr + 

i / w _ A1/2 ^ 
f^ = r(~lv~) sin[Pr + W]- 

We have omitted terms from equation (3) corresponding to other angular momenta for the electron and neutrino final states, but 
these can be neglected by the arguments above. We calculated that the term for v(p3/2), e(s1/2) contributes ~1% of the term in 
equation (3). 

We shall now calculate/^, the corresponding rate for bound-state decay. For the bound-state Dirac spinors g 
usual normalization 

2
n(r) we adopt the 

f 
2dr[ I g_ 2”(r) |2 + | /_ 2”(r) |2] = 1 (5) 

Now suppose the atom to be within a large sphere of radius L with hard walls, so that bound and continuum states can be treated on 
the same footing. The continuum spinors have the form L~1,2g_2

w(r) in order to be correctly normalized as a bound state. They 
have asymptotic form proportional to r ~1 sin (pr + <5), so the states are separated by <5p = n/L, so the density of states is L/n per unit 
p, which is LW/np per unit energy. We can thus replace J (LW/np)dW by a sum over bound states. From equation (3). 

1/2 |2 

>/!* = ! 
9n 
2R2 (^o-^)2|0-2WI2 

(6) 

(7) 

where n labels an allowed p3/2 bound state in which the electron can be created, and Wn is its (total) binding energy. For the Re/Os 
system, the 6p3/2 and subsequent shells are vacant. 

Equation (7) gives the value for an electron to be created directly into a vacant orbital. There are exchange and overlap effects 
however (Bahcall 1965), which Gilbert (1958) estimated (using Slater orbitals) to be about 9 times the direct contribution. These 
occur because the nuclear charge changes in the decay, so that there is an imperfect overlap between the Re and Os + atomic states. 
For consistency with the continuum part of the calculation, we shall treat the final state as an Os+ ion with an extra electron, rather 
than a neutral Os atom. If the Re atom is initially in its ground state, filled to the Fermi level, and we use these Os+ basis states, 
there is a nonzero amplitude for the Os+ atom to have a hole below the Fermi level and an electron above, so the ^-electron can be 
created in the hole. For each particle state, these contributions (summed over the various possible hole states) add coherently to the 
direct amplitude for decay into that particle state. The rates for different particle states (final states of the Os+) then add 
incoherently, in the same way as in equation (7). Let the label p refer to particle (vacant) states, and h to hole (occupied) states. 
Writing 10> for the Os+ ground state, the Os state after the /Ldecay is then | / > = ap

+ \ 0>. The Hamiltonian can be written as 

H, = Z n — h,p 
g-2n(R), 

and the initial Re state is approximately 

i> = ( 1 + Z ap+ah<P’ Os+ I h, Re>j 10> . 

The value is then 

/^z g-2P(R)-l<P, Os+ \h, Reyg-AR) 
9n 
2R2 (W0 - l)2 

(8) 

(9) 

(10) 
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We have here approximated the atomic binding energies (a few eV) to be negligible in comparison to the endpoint energy (2.64 keV). 
In principle there is a similar exchange contribution to the continuum decay rate, but this is negligible for the following reason. The 
exchange continuum contribution to the rate will be less than the exchange bound-state contribution because the overlaps will be 
smaller. We find the direct bound and exchange bound contributions to be of the same order, and the direct continuum to be ~ 100 
times larger ; thus the continuum exchange is a ~ 1 % correction to the continuum rate, which is negligible. 

We can now approximately reproduce Perrone’s result. He only considered the direct contributions, using nonrelativistic 
screened hydrogenic wavefunctions with Z = 61. Then the form of the wavefunctions at the origin is known explicitly, and we can 
write equation (7) as 

f1
B = YJ2n(Za)5n-3(W0-l)2 

(11) 

so \ogfB = —7.31. The “screened” log value for Z = 61 and £0 = 2.64 keV is —7.29, from Gove and Martin, so the bound-state 
decay fraction is 49%, compared to Perrone’s 58%. We shall now show that a better description of the atomic potential leads to a 
much smaller bound-state decay fraction. 

For the potential V(r) in equation (2), we used the Lenz-Jensen potential (Gombas 1949), which is an analytic approximation to 
the Thomas-Fermi model, 

VLJ(r, Z) = -C(r, Z)e-X(l + x + h2 x2 + h3 x3 + h4x
4) , 

(12) 
where b2 = 0.3344 , b3 = 0.0484 , and b4 = 2.647 x 10"3 . 

The variable x = (10.9ar)1/2Z1/6, where Z is the nuclear charge, and C(r, Z) is the nuclear Coulomb potential, taken to be that of a 
uniformly charged sphere of radius R, 

j(Za/2R)[3 - (r/R)2] r < R 
\Z((x/r) r > R (13) 

We took the nuclear radius to be 6.75 fm = 1.18T1/3 fm. 
The wave function of the bound state at the nuclear surface is sensitive to the binding energy of the state, and since this is not 

accurately reproduced by the Lenz-Jensen potential for the unoccupied valence states in which the electron is created, we added an 
adjustable Coulomb tail to the Lenz-Jensen potential : 

F(r) =. VLJ(r, Z = 75 — Z^) — C(r, Z J . (14) 

We can thus get the correct binding energy for one of the valence electrons and presume that the energies of the unoccupied states 
are then correct. We take equation (14) as the form of the Os+ potential, so the Re potential is V(r) — C(r, 1). 

To solve the coupled Dirac equations, we used a fifth-order Runge-Kutta procedure in exponential coordinate r = ep, with 
lower bound corresponding to 0.1 R. For the continuum states, we integrated out until the average TF/(IF + l)r2\g-2

W\2 

+ W/(W — l)r2|/_2^|2 was constant, then computed the normalization from this average. We computed the log^ value by 
Simpson’s rule with 50 points for the Lenz-Jensen potential with three values of Z^ (see below), and for a pure Coulomb potential, 
and it was — 6.85 for all four cases, which agrees with the tables of Gove and Martin. 

For the bound states, we used a binary search in energy as follows. Beginning with a pair of energy values bracketing the required 
bound-state energy, and integrating out well beyond the classically allowed region, one wavefunction behaved like epr and the other 
like — epr at large distances. The energy interval is then halved at each step on the basis of the behavior of the wavefunction at the 
energy in the middle of the bracket. For the overlaps and normalizations of the Re and Os+ states, we used essentially the same 
procedure, but with two simultaneous binary searches while computing the overlap and normalization integrals by adding extra 
equations to the differential equation set. 

Table 1 shows the calculation according to equation (10) for Z^ = 2. The first column is the principal quantum number in the /?3/2 
shell in the Re atom, labeled h, and the second is the binding energy in eV of an electron in the Re atom for that shell. The third 
column is the direct contribution to the log// value from that shell if it were vacant. The last three columns are the values of the 

TABLE 1 
The Calculation of the log // Value for = 2 

Re P3/2 
Energy (eV) Log// p = 6 

Overlaps 

P — ? p = \ 

10390 
2220 

360 
18.4 
2.60 
1.24 
0.25 

-5.78 
-6.35 
-6.98 
-1M 
-9.03 
-9.84 

-10.51 

0.00023 
0.00095 
0.00511 
0.0767 
1 

0.00013 
0.00055 
0.00293 
0.0420 

1 

0.00004 
0.00016 
0.00089 
0.0122 

log// (direct).  
log/i/  
log // (direct + exchange) 

-8.95 
-9.45 -10.50 -10.87 

-9.40 
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TABLE 2 
Results for Various 

2.4 2.75 Exp. 

Re 5p3/2 
energy (eV)  

Re 5d5i2 
energy (eV)  

Direct : 
log/,*   
Bound decay  

Direct -f Exchange: 
log/,8   
Bound decay  

18.4 

1.6 

-8.95 
0.78% 

-9.40 
0.28% 

26.9 

3.4 

-8.72 
1.33% 

-9.12 
0.54% 

34.6 

6.3 

-8.62 
1.67% 

-9.00 
0.70% 

34.6 ± 0.6 

3.5 ± 0.5 

Note.—The continuum log A value is —6.85, and the bound decay frac- 
tions are percentages. The experimental energy levels in the last column are 
from Bearden and Burr. 

overlaps of the n = 6,1, and 8 states in Os+, labeled p, with the Re state of the first column. Below the third column is the direct log 
fi8 value, obtained by summing the values for h = 6,1, and 8. Below the last three columns is the (direct + exchange) log/^ value 
for each p state, with the total below. Notice that the exchange terms destructively interfere with the direct, making a lower value. 
The value = 2 corresponds to the potential felt by an electron far removed from the Os+ ion. This value of gives the binding 
energy of the 5p state of Re as 18.6 eV, much smaller than the measured value of ~ 34.6 eV (Bearden and Burr 1967). We found that 
Z^ = 2.75 reproduces this energy. Alternatively, we tried to get the 5d5/2 state correct, at ~3.5 eV (Bearden and Burr 1967), 
resulting in a value Z^ = 2.4. Table 2 shows the results for the three values of Z^, together with the energy levels in the Re atom 
corresponding to these potentials. When trying to reproduce a more tightly bound state,Z^ is larger; this is because the screening of 
the nuclear charge is less. Since the bound-state decay creates an electron in a vacant orbital, it is these that we wish to describe 
accurately, and consequently the “ asymptotic ” potential with Z^ = 2 is probably the most accurate. 

in. CONCLUSIONS 
We have shown that the bound-state decay fraction of 187Re is less than 1% by using more accurate electron orbitals instead of 

the hydrogenic orbitals used in previous work (Perrone 1971; Gilbert 1958). We have neglected the effects of the Coulomb 
interaction of the ejected ß-ray with the atomic electron (Williams and Koonin 1983), which may cause shake-up or shake-off in the 
atom. We feel that these effects are unlikely to significantly change the possible bound-state orbitals available to the ^-electron, and 
thus not to change our result much. 

Our calculation deals with neutral atomic Re; there is a considerable uncertainty in the Re/Os chronology because the half-life of 
187Re decreases dramatically when it is ionized under astrophysical conditions in the interior of stars. This has been extensively 
discussed by Takahashi and Yokoi (1983). 

There is additional uncertainty in the Re/Os chronology arising in part from the fact that the amount of radiogenic 187Os must be 
corrected for that produced independently by the s-process. The value of aNs is constant along an s-process chain, where a is the 
neutron capture cross section for a particular isotope and Ns the abundance of the isotope. The cross section for the ground state of 
187Os has been measured in the laboratory; unfortunately the excited state of 187Os at 9.75 keV is also populated in the s-process (at 
kT ä 30 keV), and the neutron capture on this excited state cannot be directly determined in the laboratory. Indirect measurements 
are underway in a number of laboratories, and the final outcome of the Re/Os chronology of the Galaxy awaits these results. 

We have shown that the bound state decay of 187Re is less than 1% of the total and thus that the geochemical and most precise 
laboratory measurements are consistent. Since the former are considerably more precise than the latter, we recommend the value 
45.6 ± 1.2 Gyr for the half-life of neutral18 7Re. 

Note added in manuscript—It has come to our attention that Borg and Lindner at Lawrence Livermore National Laboratory are 
making a new direct measurement of the 187Re half-life. 
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