
CONCURRENCY PRACTICE AND EXPERIENCE, VOL. 1(1), 51-62 (SEPTEMBER 1989)

Supersonic fluid flow in parallel with an
unstructured mesh
ROY D. WILLIAMS
Concurrent Computation Project
California Indfute of Technology 35648
P m a d e ~ , CA 91125, USA

SUMMARY
An algorithm has been implemented for time-accurate solutions of the two-dimensional
compressible Euler equations using an irregular triangular mesh. The code runs on
distributed or shared memory or sequential machines, and is written using the Distributed
Irregular Mesh Environment (DIME). DIME is a programmlng environment for calculations
with such meshes, with adaptive mesh refinement and dynamic load balancing. Results are
presented for an example of a Mach 3 flow over a step, computed with a 32-processor
NCUBE hypercube.

INTRODUCTION

The potential of a multiprocessor can only be realized if the problem at hand can be split
into many small pieces which can run in parallel. The most cost-effective and scaleable
multiprocessors are distributed-memory machines, in which not only the computation but
also the data must be partitioned. In many cases, such as solving Laplace’s equation on
a regular mesh, this decomposition is natural and straightforward.

Many important problems cannot be easily decomposed, and one such example is the
computation of high-speed compressible flows. The difficulty is that the solution is very
inhomogeneous, containing shocks where the mesh and computational effort should be
concentrated and also regions of near-uniform flow where the opposite is true. Additional
meshing problems are posed by complex domain boundaries. Since the position of shocks
is not known in advance, an adaptive mesh is called for, and a consequent need for
dynamic load-balancing of the computation.

In addition to the ease of programming a regular mesh calculation, another advantage
is that computations are efficiently performed with a vector machine. Unfortunately it is
difficult to adaptively refine a regular mesh or fit complex boundaries. Rather than try
to use such a regular or piecewise regular mesh, I have chosen to use a completely
unstructured irregular mesh. Such meshes have the flexibility required for dynamic
adaptive meshing of complex domains, but at the cost of more memory utilized in
storing the logical structure of the mesh, and slower computation due to gatherhcatter
operations. But since the unstructured mesh can fit itself accurately to the boundaries and
near-singularities of the problem domain, it must be the most efficient for sufficiently
inhomogeneous problems.

1040-3 108/89/01005 1-1 2$06.00
01989 by John Wiley & Sons, Ltd.

Received J w 1989

52 ROY D. WILLIAMS

Unstructured meshes have been widely used for calculations with conventional
sequential machines. Jameson[l] uses explicit finite-element based schemes on fully
unstructured tetrahedral meshes to solve for the flow around a complete aircraft, and
other workers[21 have used unstructured triangular meshes. Jameson and others[l4]
have used multigrid methods to accelerate convergence.

The solution algorithms employed in the papers[5] use explicit time stepping and
require the use of artificial dissipation to stabilize the computations. The discrete
equations used in the numerical procedures result from coupling different time-stepping
schemes for the governing equations with the Galerkin finite element method[6] over
a mesh of triangular elements. Although the algorithms can be used in a time-accurate
mode, the emphasis here is on the solution of steady-state problems by stepping through
the false transient with a relatively come mesh, then adaptively refining as the solution
equilibrates.

DIME (Distributed Irregular Mesh Environment)[7] is a programming environment
under development at Caltech for calculations with unstructured triangular meshes using
distributed-memory machines. The environment provides adaptive refinement, dynamic
load-balancing, and a tool for specifying and coarsely hiangulating a domain. This
coarse triangulation is loaded into a single processor of the machine, then refinement
and balancing are used to create a computational mesh, domain-decomposed among all
the processors of the machine. The user specifies a data structure to be associated with
each node, with each element (triangle), and with each boundary node of the mesh;
these data are manipulated by a user-program written in C using constructs such as
PORALLNODES.. .NEXTNODE, which is a loop over all the nodes of the mesh.

THE DIME STRUCTURES

Figure la shows a simple mesh covering a rectangle, and Figure lb shows its
representation as nodes pointing to elements and elements pointing to nodes. There are
extra data structures attached to boundary nodes which point to the next boundary node
clockwise. Each of these three DIME structures also points to its respective user-dam,
which for the purposes of this paper contain the fluid simulation data such as velocity
and density.

The mesh is connected locally, so that DIME is good for problems which are also local.
Many scientific problems can be expressed as a set of local equations. When the mesh is
split among the processors of the machine, the physical locality is preserved, in the sense
that communication links are set up between processors only when the domains controlled
by those processors have a common border. Physical locality does not necessarily mean
that processors are locally connected in the machine; the communcation protocol used by
DIME is a general message-passing system and the programmer does not need to know
the connectivity of the machine.

Figure 2 shows the same mesh as in Figure 1 but split up among three processors.
Where a processor-processor boundary passes through a node, copies of the node
are kept, one for each participating processor. The user-data in each of these copies
is identical. Thus each physical node of the mesh is represented by several copies,
with the copies connected by communication links. DIME has only two forms of
communication: either the processors share global data, or for each physical node

SUPERSONIC FLUID FLOW IN PARALLEL WITH AN UNSTRUCTURED MESH 53

0 NODE
A ELMEN1

Figure 1. (a) an unstructured mesh (b) the DIME structure corresponding to the mesh,
consisting of nodes connected to elements and elements connected to nodes, plus bolurdary

structures

the copies share data. These communication links between node-copies are shown by
arrows in Figure 2, and each is a foreign poinrer, which consists of a processor number
and a pointer within that processor. Notice also in Figure 2 that new boundary data
structures have been set up for processor-processor boundaries in addition to those for
physical boundaries. Thus a boundary structure can refer to a processor-processor or a
physical boundary or both.

An application code for DIME consists of two parts: the DIME environment itself,
which sets up these communication links, does refinement and generally keeps track
of the mesh structure; and a user-program, which manipulates application-specific data
attached to the DIME structures using the macros and functions provided by DIME.

The user-program written for a particular application will generally consist of each
node gathering information from its neighboring elements, and each element gathering
from its neighboring nodes, plus of course manipulation of the element and node data
without reference to the neighbors.

DIME runs loosely synchronously, meaning that the program for each processor
consists of alternate cycles of calculation and communication. A particular

54 ROY D. WILLIAMS

I Parallel structure 1
PROCESSOR 2

PROCESSOR I ,' 1

PROCESSOR 3

0 NOOE
A ELEMENT

BOUNOARY 4 F O R E I G N P O I N T E R

Figure 2. DIME structure for the mesh of Figure 1. split among three processors. Foreign
pointers are shown ar arrows and consist of a processor number and an address in that

processor

communication section of one processor must correspond to the same section in the
processors with which it communicates. A processor waits when another processor is
not ready to communicate. The machine does not run completely synchronously, in the
sense that during a computation cycle processors may run different parts of the code,
but when communication occurs the receiving processor will be looking to the sender
and expecting a message, and if that message does not arrive the machine deadlocks.
The refinement process, for example, involves communication, so it must be done in
all processors even if only one processor actually has any elements to refine. Another
example might be choosing a timestep for the simulation, where the global maximum
fluid speed might be required. Each processor calculates the maximum for its portion
of the mesh then the function call COMBINE obtains the global maximum. The COMBINE
must be called in all processors.

Just as COMBINE combines information from each processor and passes the result back
to each processor, so the DIME macro NODE-COMBINE combines information from the
copies of a node and passes the result back to each copy. Thus, for example, if each
node is summing the data from each of its neighboring elements, there should be a
NODE-COMBINE after the sum so that the part of the sum in neighboring processors is
included.

DIME is written in C and runs with the Express operating system[8] on distributed or
shared memory machines or sequentially. Express is the descendent of CrOSKubix,
developed at Caltech. Having the code run sequentially is very useful for program

SUPWONIC FLUID FLOW IN PARALLEL WITH AN LJNSlRIJClTJRED MESH 55

development and debugging. Since compiling and machine access am so much easier;
there is the best of both worlds, with the ease of use of a sequential machine, and the
speed of a parallel machine.

The user may adaptively refine the DIME mesh by selecting a set of elements to be
refined and loosely synchronously calling the function REFINE Load-balancing may be
done by orthogonal recursive bisection[7] or the user may directly specify which elements
are to be given to which processor. DIME provides many graphics functions, including
contouring, vector plots, examining the logical mesh in detail, zooming and panning, and
a Postscript hard-copy interface.

COMPRESSIBLE FLOW ALGORITHM

The algorithm of Liihner ef a1.[5], which is an explicit method of the TaylorGalerkin
family[6], was used, with an artificial viscosity to stabilize strong shocks. The governing
equations are of advective type with no diffusion, where U is a vector containing the
information about the fluid at a point. I have used bold symbols to indicate an information
vector, or a set of fields describing the state of the fluid. In this implementation, U
consists of density, velocity, and specific total energy (or equivalently pressure); it could
also include other information about the state of the fluid such as chemical mixture or
ionization data. F is the flux vector, and has the same structure as U in each of the two
coordinate directions. In this paper,

where p is the density, w = (4 v) is the velocity, E is the specific total energy, and p is
the pressure. The equation set is completed by the addition of an equation of state: the
fluid is assumed to be an ideal gas.

P = (7 - - d/21

where 7 is the ratio of specific heats, taken to be 1.4. The local sound speed is then
given by c2 = 7 p / p.

The numerical algorithm is explained in detail in papers[5], so only an outline is
given for advancing the solution from t to t + St. The method uses linear triangular
elements to approximate the fields and alternates between node-based and element-based
represenlations of the fields. First a timestep is chosen. This is constrained by a Courant
condition with a safety factor.

Step I :
Assuming the node-based information vector U is known at time t , the node-based flux
F can be found. Each element then gathers U and F from its neighboring nodes to obtain
a first order element-based approximation to the information vector at time t + 6f/2. The
element-based flux can then be calculated.

56 ROY D. WILLIAMS

Step 2a:

The nodal solution is advanced from t to t + bt using the time- and space-staggered values
from the first step. Each node gathers information from its neighboring elements, and a
system of sparse linear equations is generated whose sparsity graph is the same as that
of the mesh. These equations can typically be efficiently solved with three iterations of
a relaxation solver.

Step 26:

Boundary conditions are applied. This is somewhat delicate for hyperbolic flows[9].
There are three types of boundary for the simulation of a wind-tunnel; inflow, outflow,
and solid wall. If the flow is supersonic, the outflow condition is irrelevant, since no
information can propagate back into the bulk of the tunnel. For the inflow conditions, U
is completely specifiedaensity, velocity and pressure. At a solid wall, just one of the
four components of U must be specified, which is that the velocity normal to the wall
should be zero. After steps 1 and 2a, this will not be exactly true, so the velocity is
projected to be parallel to the wall, and the-pressure and density extrapolations are taken
from neighboring internal nodes of the mesh.

Step 2c:

Artificial viscosity is applied. This is necessary to make the calculation stable. The
underlying assumption of a discrete approximation to a continuum is that fields change
slowly from mesh-point to mesh-point; without artificial viscosity even the continuum
model develops discontinuities, so clearly this assumption would fail to be true for the
discretized version. The artificial viscosity model is that of Lapidus[ll]. A change 6U in

where the unit vector 1 is the local gradient of fluid speed:

and the diffusion coefficient k is given by

a
ai

k = CA,-(w. I)

where C is a constant and Ae is the element area.

ADAPTIVE REFINEMENT

After the initial transients have dispersed and the flow has settled, the mesh may be
refined. The criterion used for deciding which elements are to be refined is based on
the gradient of the density. The user specifies a percentage of elements which are to be
refined, and a criterion

SUPERSONIC FLUID FLOW IN PARALLEL WITH AN UNSTRUCTURED MESH 57

Re = A,Vp

is calculated for each element. A value Rc,it of this criterion is found such that the given
percentage of elements have a value of R, greater than Rc,ig, and those elements are refined.
The criterion is not simply the gradient of the density, because the strongest shock in
the simulation would soak up all the refinement., leaving weaker shocks unresolved. With
the element area, 4, in the criterion, regions will ‘saturate’ after sufficient refinement,
allowing weaker shocks to be refined. Only when the artificial viscosity coefficient C is
reduced will the shocks become narrower, allowing further refinement.

Element t o be refined

Elments are bisected
along the longest side

Figure 3 Refmemen! algorithm for DIME; e.,ments are bisected on the .,ngest side and non-
conforming nodes (circles) made. The elements opposite these are refined and so on until all

non-conforming nodes are eliminated

The refinement is done by the algorithm of Rivara[9], and is also explained in detail in
Reference 7. Each nominated element is bhected by creating a new node at the midpoint
of the longest edge and joining the new node to the opposite vertex of the element. This
l int stage is shown at the top of Figure 3. In general some of these new nodes will be
‘non-conforming’ (marked with circles in Figure 3). A non-conforming node is one which
causes a geometrical triangle to be a logical quadrilateral, since on the other side of the
refined element is an angle of 180 degrees. The elements opposite the non-conforming
nodes (the logical quadrilateral elements) are marked for refinement and bisected along
the longest side. The process continues until there are no non-conforming nodes.

58 ROY D. WILLIAMS

After refinement the mesh may be 'topologically relaxed"71. For each non-boundary
edge of the mesh there is an element on each side of the edge, forming a quadrilateral with
the edge being one of the diagonals. If the sum of the two angles opposite the diagonal is
greater than 180 degrees, then the diagonal is switched to the other possibility. Now the
sum of the opposite angles must be less than 180 degrees since the sum of all four angles
of a quadrilateral is 360 degrees. This process is continued until no further relaxations
are possible. The w o n for this is that after topological relaxation the mesh is now a
Delaunay triangulation (dual of a Voronoi tesselation), so that each node is logically
connected to its nearest neighbors. For elliptic problems this is important because the
stiffness matrix of a Delaunay mesh now has the desirable characteristic of diagonal
dominance[l2], making the iterative solution of the finite element equations robust.

EXAMPLE

Figure 4 shows the flow-field resulting from Mach 3 flow over a step, computed with a
32-node NCUBE hypercube. This problem is that used by Woodward and Colella[l3]
in their benchmarking of compressible-flow algorithms. At the top is the mesh used
for the computation, where the heavy lines mark splits between processors. Notice that
each processor owns about the same number of elements. The lower three panels show
velocity, density and pressure. There is a primary detached shock upstream, and part way
down this primary shock, from the top of the wind-tunnel, a diffuse secondary shock
splits from it.

In Figure 4 the contour lines are somewhat ragged, especially toward the downstream
(right) end of the wind-tunnel where the mesh is coarse. In doing the simulation the
artificial viscosity coefficient must be chosen: if it is too small the contour lines become
ragged and eventually the whole calculation becomes unstable; if too large the shocks
widen and diffuse and detail is lost.

It is difficult to know how to run this wind-tunnel simulation automatically; either
with a predefined schedule of artificial viscosity, time-stepping and refinement, or some
control process to manage these operating parameters. In particular it is difficult to know
how far to run the simulation before refining the mesh, and to what extent to do so.

TIMING

Figure 5 shows timing results for 1, 4, 16, 64 and 256 NCUBE processors. The time
per element per time-step is shown for the compressible flow algorithm against number
of elements in the simulation. The curves end when the processor memory is full. Each
processor offers a nominal 512Kb memory, but when all the software and communication
buffers are accounted for, there is about 120Kb available for the mesh.

The time taken is a sum of computation and communication contributions. For
N elements divided among n processors we expect the number of elements to
be N/n per processor so that the computation time per element is proportional
to l/n. The communication time is dependent on the number and size of the
messages. The size of the messages is proportional to the number of nodes at

SUPERSONIC FLUID FLOW IN PARALLEL WITH AN UNSTRUCTURED MESH 59

Figure 4. Mach 3 flow over a step, coming in at the left of the picture. The 32-processor
mesh is heavily refined in the vici?iify of the shocks

processor-processor boundaries, which is proportional to (N/n)f . The communication
time is also proportional to the greatest Hamming distance between the processors of
the machine, which for a hypercube is log2 n, plus some constant for latency. I shall use
the term speed-up in the sense of constant grain-size rather than constant problem size;
thus speed-ups can be extracted by comparing the greatest speed from a given number
of processors with the asymptotic speed of the single processor, the results being,

Table 1

pIocessors speed-up Efficiency
4 2.9 72%

16 12 75%
64 36 56%

256 112 44%

60 ROY D. WILLIAMS

128

64

32

16

Speed
8

4

2

1

0.5
16 32 64 128 256 512 1024 2048 4096 81'42 16184 32768 65536 131072

Number of Elements

Figure 5 . Timings for the compressible flow code with an NCUBE hypercube. This is a log-log
plot of speed {elements processed per unit time) against the number of elements, with various
numbers of processors. The speed is normalized to the asymptotic speed of a single processor.
The curve for a particular number of processors should become $at as the communication

time becomes smll compared with computation time

It is clear from Figure 5 that boundary effects are still very important even when the
memory of each processor is full; these speed-up values would improve greatly with
faster communication. The efficiency is poorer for larger numbers of processors, because
the communication protocol is designed to send messages from any processor to any
other, so that the communication times have a factor log2 n. If the load-balancer and
the communication protocol were designed to take advantage of the architecture of the
machine, so that the mesh-neighbor processors were also machine neighbors, this factor
could be eliminated, but at the expense of portability.

FUTURE WORK

As mentioned above a pressing need is for robust automatic control of the simulation;
deciding when the false transients have passed and thus that it is time to refine, how
much to refine, and what the artificial viscosity coefficient should be.

The discretization of the boundary conditions leaves much to be desired, since the
extrapolation from interior to boundary mentioned above is only a first-order p r o h s
compared to the second-order advection solver used here, creating a large diffusion at
the boundaries, possibly explaining the diffuseness of the secondary shock in Figure 4.

SUPERSONIC FLUID FLOW IN PARALLEL WlTH AN UNSTRUCTURED MESH 6 1

In addition to load-balancing the spatial mesh, the simulation should be load-balanced
in time; meaning that different parts of the mesh should run at different time-steps. This is
called dornain-~plitting[l41. The local time-step is controlled by the Courant condition, so
for roughly uniform velocity, the time-step should be proportional to the element size. In
the present implementation the time-step is a global minimum of this Courant condition;
in the future each processor will have its own time-step. To keep synchronization, each
time-step must be an integer quotient of some global maximum step, and it would be
convenient if each time-step were to be forced to be a power of two multiplied by a
global minimum time-step.

A more accurate solver for compressible flow is flux-corrected uansport[l5]. In this
case, a low-order scheme, such as that implemented here, is used for a predictor step, and
a higher-order scheme also used for the step; the higher-order scheme adds non-physical
oscillations which are removed using information from the lower-order scheme.

The most desirable extension of this work would be a full three-dimensional solver.
Unfortunately maintaining a fully unstructured mesh in 3D is much more difficult than in
2D, partly because it is so hard to visualize a 3D unstructured mesh. Some work has been
done with partially unstructured meshes in 3D[1]. As noted above, the 512Kb memory
of an NCUBE processor is mostly taken with code and buffers, leaving little room for
actual mesh, so that the boundary part is not negligible compared to the internal part.
In23D this problem is exacerbated, because the surface area to volume ratio becomes
N3 rather than the N i in 2D. One solution is of course, a larger memory: the MarkIIIfp
hypercube offers 40%Kb per processor. Another solution is faster communication, which
is currently being installed.

ACKNOWLEDGEMENTS

This work was supported in part by Department of Energy Grant DE-FG03-85ER25009.

REFERENCES

1. A. Jameson and TJ. Baker, ‘Euler calculations for a complete aircraft’. in 10th lnt. Conf. on Nwn.
Meth. in Fluid Mech., Beijing 1986. F.G. Zhang and Y.L. Zhu eds., Springer-Verlag Lecture
Notes in Physics 264. 1986, p 334.
A. Jameson. T.J. Baker, and N.P. Weatherill, Calculation of Inviscid Transonic Flow over a
Complete Aircrdt, AIAA Paper 86-0103, 1986.
A. Jameson and T. J. Baker, Improvements to the Aircrafl Euler Method. AIAA Paper 87-0452,
1987.
A. Jameson, Successes and Challenges in Computational Aerodynamics, AIAA Paper 87-1184,
1987.

2. D. J. Mavriplis. Accurate Multigrid Solution of the Euler Equations on Unstructured and
Adaptive Meshes, NASA-CR 181679 also ICASE Report 88-40, 1988.
E. Perez et al.. ‘Adaptive full-multigrid finite element methods for solving the two-dimensional
Euler equations, in 10th Int. Cog. on Nwn. Meth. in Fluid Mech.. Beijing 1986, F.G. Zhang and
Y.L. Zhu eds.. Springer-Verlag Lecture Notes in Physics 264, 1986. p 523.
D. G. Holmes and S.H. Lamson. ‘Adaptive triangular meshes for compressible flow solutions’,
Proc. Int. Cot$ Numerical Grid Generation, Landshut, 1986, J. Hauser and C. Taylor eds.,
Pineridge, 1986. p 413.

3. D.J. Dannenhoffer and R. L. Davis, ‘Adaptive grid computations for complex flows’. Proc. 4th
Int. Conf. Supercomputing. Santa Clara, CA, 1989, vol II p 206.

62 ROY D. WILLIAMS

4. W. J. Us& and E. M. Murman. Embedded Mesh Solution of fhe Eder Equations using a Multiple
Grid Method, AIAA Paper 83-1946-CP, 1983.

5. Whner, K. Morgan and O.C. Zienkowicz, ‘An adaptive finite element procedure for compressible
high speed flows’, Comp. Meth. in Appl. Mech. and Eng., 51. 441 (1985).
R. Whner, K. Morgan and O.C. Zienkowicz. ‘The solution of non-linear hyperbolic equation
systems by the. finite element method’, Int. J. Num. Meth. in h g . . 4. 1043 (1984).
R. Lshner, K. Morgan, J. Peraire, O.C. Zienkowicz and L. Kong. Numerical Mefhods for Fluid
Mechanics I I , K.W. Morton and MJ. Baines, eds., Clarendon Press, Oxford, 1986.
R. Whner. ‘Finite elements in CFD: what lies ahead?’, Int. j . nwner. mefhodr eng., 24, 1741
(1987).

6. J. Donea, ‘A Taylor-Galerkin method for convective transport problems’, Int. j . tuuner. methods
eng.. 20. 101 (1984).

7. R.D. Williams. ‘DIME a programming environment for unstructured triangular meshes on a
distributed-memory parallel processor’, Proc. 3rd Int. Cog. on Hypercube Parallel Processors
and Applicationr. G.C. Fox ed., Pasadena, CA, January 1988; also Caltech Concunent
Computation Project Report C3P-502. 1987.

8. EXPRESS: An Operating System for Parallel Computers, ParaSofi Corporation, Pasadena,
California, 1987.
G.C. Fox, M. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon and D.W. Walker, Solving
Problem on Concurrent Processors, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

9. M.C. Rivara, ‘Design and data structure of fully adaptive multigrid. finiteelement software’,
ACM Trans. in Math. Software, 10, 242 (1984).

10. MJ. Abbett, ‘Boundary condition calculation procedures for inviscid supersonic flow fields’,
Proc. AIAA Compuafioml Fluid Dynamics Conf., 1973.
C.C. Lytton, ‘Solution of the Euler equations for transonic flow over a lifting aerofoil’, J. C o w .
Phys. 73, 395 (1987).
T.H. Pulliam, ‘Characteristic boundary conditions for the Euler equations’, in Numerical
Boundary Condition Procedures, NASA Conf. Pub. 2201. NASA Ames, Moffett Field, CA,
P. Kutler ed.

11. A. Lapidus. ‘A detached shock calculated by second order finite differences’. J. Complrt. Phys.,
2, 154 (1967).

12. D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins UP, Baltimore, 1983.

13. P. Woodward and P. Colella, ‘The numerical simulation of two-dimensional fluid flow with
strong shocks’, J. C o w . Phys.. 54. 115 (1984).

14. R. Uihner, K. Morgan and O.C. Zienkowicz, ‘The use of domain splitting with an explicit
hyperbolic solver’, Comp. Meth. in Appl. Mech. and Eng.. 45, 313 (1984).

15. E. S. Oran and J. P. Boris. Numerical Simulation of Reactive Flow, Elsevier, New York, 1987.
R. Liihner. K. Morgan, J. Peraire and M. Vahdati, ‘Finiteelement flux-corrected transport for
the Euler and Navier-Stokes equations’, Int. J . Num. Meth. in Fluids, 7, 1093 (1987).

