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SUMMARY 
An algorithm has been implemented for time-accurate solutions of the two-dimensional 
compressible Euler equations using an irregular triangular mesh. The code runs on 
distributed or shared memory or sequential machines, and is written using the Distributed 
Irregular Mesh Environment (DIME). DIME is a programmlng environment for calculations 
with such meshes, with adaptive mesh refinement and dynamic load balancing. Results are 
presented for an example of a Mach 3 flow over a step, computed with a 32-processor 
NCUBE hypercube. 

INTRODUCTION 

The potential of a multiprocessor can only be realized if the problem at hand can be split 
into many small pieces which can run in parallel. The most cost-effective and scaleable 
multiprocessors are distributed-memory machines, in which not only the computation but 
also the data must be partitioned. In many cases, such as solving Laplace’s equation on 
a regular mesh, this decomposition is natural and straightforward. 

Many important problems cannot be easily decomposed, and one such example is the 
computation of high-speed compressible flows. The difficulty is that the solution is very 
inhomogeneous, containing shocks where the mesh and computational effort should be 
concentrated and also regions of near-uniform flow where the opposite is true. Additional 
meshing problems are posed by complex domain boundaries. Since the position of shocks 
is not known in advance, an adaptive mesh is called for, and a consequent need for 
dynamic load-balancing of the computation. 

In addition to the ease of programming a regular mesh calculation, another advantage 
is that computations are efficiently performed with a vector machine. Unfortunately it is 
difficult to adaptively refine a regular mesh or fit complex boundaries. Rather than try 
to use such a regular or piecewise regular mesh, I have chosen to use a completely 
unstructured irregular mesh. Such meshes have the flexibility required for dynamic 
adaptive meshing of complex domains, but at the cost of more memory utilized in 
storing the logical structure of the mesh, and slower computation due to gatherhcatter 
operations. But since the unstructured mesh can fit itself accurately to the boundaries and 
near-singularities of the problem domain, it must be the most efficient for sufficiently 
inhomogeneous problems. 
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Unstructured meshes have been widely used for calculations with conventional 
sequential machines. Jameson[l] uses explicit finite-element based schemes on fully 
unstructured tetrahedral meshes to solve for the flow around a complete aircraft, and 
other workers[21 have used unstructured triangular meshes. Jameson and others[l4] 
have used multigrid methods to accelerate convergence. 

The solution algorithms employed in the papers[5] use explicit time stepping and 
require the use of artificial dissipation to stabilize the computations. The discrete 
equations used in the numerical procedures result from coupling different time-stepping 
schemes for the governing equations with the Galerkin finite element method[6] over 
a mesh of triangular elements. Although the algorithms can be used in a time-accurate 
mode, the emphasis here is on the solution of steady-state problems by stepping through 
the false transient with a relatively come mesh, then adaptively refining as the solution 
equilibrates. 

DIME (Distributed Irregular Mesh Environment)[7] is a programming environment 
under development at Caltech for calculations with unstructured triangular meshes using 
distributed-memory machines. The environment provides adaptive refinement, dynamic 
load-balancing, and a tool for specifying and coarsely hiangulating a domain. This 
coarse triangulation is loaded into a single processor of the machine, then refinement 
and balancing are used to create a computational mesh, domain-decomposed among all 
the processors of the machine. The user specifies a data structure to be associated with 
each node, with each element (triangle), and with each boundary node of the mesh; 
these data are manipulated by a user-program written in C using constructs such as 
PORALLNODES.. .NEXTNODE, which is a loop over all the nodes of the mesh. 

THE DIME STRUCTURES 

Figure la shows a simple mesh covering a rectangle, and Figure lb  shows its 
representation as nodes pointing to elements and elements pointing to nodes. There are 
extra data structures attached to boundary nodes which point to the next boundary node 
clockwise. Each of these three DIME structures also points to its respective user-dam, 
which for the purposes of this paper contain the fluid simulation data such as velocity 
and density. 

The mesh is connected locally, so that DIME is good for problems which are also local. 
Many scientific problems can be expressed as a set of local equations. When the mesh is 
split among the processors of the machine, the physical locality is preserved, in the sense 
that communication links are set up between processors only when the domains controlled 
by those processors have a common border. Physical locality does not necessarily mean 
that processors are locally connected in the machine; the communcation protocol used by 
DIME is a general message-passing system and the programmer does not need to know 
the connectivity of the machine. 

Figure 2 shows the same mesh as in Figure 1 but split up among three processors. 
Where a processor-processor boundary passes through a node, copies of the node 
are kept, one for each participating processor. The user-data in each of these copies 
is identical. Thus each physical node of the mesh is represented by several copies, 
with the copies connected by communication links. DIME has only two forms of 
communication: either the processors share global data, or for each physical node 
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0 NODE 
A ELMEN1 

Figure 1. (a) an unstructured mesh (b) the DIME structure corresponding to the mesh, 
consisting of nodes connected to elements and elements connected to nodes, plus bolurdary 

structures 

the copies share data. These communication links between node-copies are shown by 
arrows in Figure 2, and each is a foreign poinrer, which consists of a processor number 
and a pointer within that processor. Notice also in Figure 2 that new boundary data 
structures have been set up for processor-processor boundaries in addition to those for 
physical boundaries. Thus a boundary structure can refer to a processor-processor or a 
physical boundary or both. 

An application code for DIME consists of two parts: the DIME environment itself, 
which sets up these communication links, does refinement and generally keeps track 
of the mesh structure; and a user-program, which manipulates application-specific data 
attached to the DIME structures using the macros and functions provided by DIME. 

The user-program written for a particular application will generally consist of each 
node gathering information from its neighboring elements, and each element gathering 
from its neighboring nodes, plus of course manipulation of the element and node data 
without reference to the neighbors. 

DIME runs loosely synchronously, meaning that the program for each processor 
consists of alternate cycles of calculation and communication. A particular 
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I Parallel structure 1 
PROCESSOR 2 

PROCESSOR I ,' 1 

PROCESSOR 3 

0 NOOE 
A ELEMENT 

BOUNOARY 4 F O R E I G N  P O I N T E R  

Figure 2.  DIME structure for the mesh of Figure 1. split among three processors. Foreign 
pointers are shown ar arrows and consist of a processor number and an address in that 

processor 

communication section of one processor must correspond to the same section in the 
processors with which it communicates. A processor waits when another processor is 
not ready to communicate. The machine does not run completely synchronously, in the 
sense that during a computation cycle processors may run different parts of the code, 
but when communication occurs the receiving processor will be looking to the sender 
and expecting a message, and if that message does not arrive the machine deadlocks. 
The refinement process, for example, involves communication, so it must be done in 
all processors even if only one processor actually has any elements to refine. Another 
example might be choosing a timestep for the simulation, where the global maximum 
fluid speed might be required. Each processor calculates the maximum for its portion 
of the mesh then the function call COMBINE obtains the global maximum. The COMBINE 
must be called in all processors. 

Just as COMBINE combines information from each processor and passes the result back 
to each processor, so the DIME macro NODE-COMBINE combines information from the 
copies of a node and passes the result back to each copy. Thus, for example, if each 
node is summing the data from each of its neighboring elements, there should be a 
NODE-COMBINE after the sum so that the part of the sum in neighboring processors is 
included. 

DIME is written in C and runs with the Express operating system[8] on distributed or 
shared memory machines or sequentially. Express is the descendent of CrOSKubix, 
developed at Caltech. Having the code run sequentially is very useful for program 
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development and debugging. Since compiling and machine access am so much easier; 
there is the best of both worlds, with the ease of use of a sequential machine, and the 
speed of a parallel machine. 

The user may adaptively refine the DIME mesh by selecting a set of elements to be 
refined and loosely synchronously calling the function REFINE Load-balancing may be 
done by orthogonal recursive bisection[7] or the user may directly specify which elements 
are to be given to which processor. DIME provides many graphics functions, including 
contouring, vector plots, examining the logical mesh in detail, zooming and panning, and 
a Postscript hard-copy interface. 

COMPRESSIBLE FLOW ALGORITHM 

The algorithm of Liihner ef a1.[5], which is an explicit method of the TaylorGalerkin 
family[6], was used, with an artificial viscosity to stabilize strong shocks. The governing 
equations are of advective type with no diffusion, where U is a vector containing the 
information about the fluid at a point. I have used bold symbols to indicate an information 
vector, or a set of fields describing the state of the fluid. In this implementation, U 
consists of density, velocity, and specific total energy (or equivalently pressure); it could 
also include other information about the state of the fluid such as chemical mixture or 
ionization data. F is the flux vector, and has the same structure as U in each of the two 
coordinate directions. In this paper, 

where p is the density, w = (4 v) is the velocity, E is the specific total energy, and p is 
the pressure. The equation set is completed by the addition of an equation of state: the 
fluid is assumed to be an ideal gas. 

P = (7 - - d/21 

where 7 is the ratio of specific heats, taken to be 1.4. The local sound speed is then 
given by c2 = 7 p  / p. 

The numerical algorithm is explained in detail in papers[5], so only an outline is 
given for advancing the solution from t to t + St. The method uses linear triangular 
elements to approximate the fields and alternates between node-based and element-based 
represenlations of the fields. First a timestep is chosen. This is constrained by a Courant 
condition with a safety factor. 

Step I : 
Assuming the node-based information vector U is known at time t ,  the node-based flux 
F can be found. Each element then gathers U and F from its neighboring nodes to obtain 
a first order element-based approximation to the information vector at time t + 6f/2. The 
element-based flux can then be calculated. 
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Step 2a: 

The nodal solution is advanced from t to t + bt using the time- and space-staggered values 
from the first step. Each node gathers information from its neighboring elements, and a 
system of sparse linear equations is generated whose sparsity graph is the same as that 
of the mesh. These equations can typically be efficiently solved with three iterations of 
a relaxation solver. 

Step 26: 

Boundary conditions are applied. This is somewhat delicate for hyperbolic flows[9]. 
There are three types of boundary for the simulation of a wind-tunnel; inflow, outflow, 
and solid wall. If the flow is supersonic, the outflow condition is irrelevant, since no 
information can propagate back into the bulk of the tunnel. For the inflow conditions, U 
is completely specifiedaensity, velocity and pressure. At a solid wall, just one of the 
four components of U must be specified, which is that the velocity normal to the wall 
should be zero. After steps 1 and 2a, this will not be exactly true, so the velocity is 
projected to be parallel to the wall, and the-pressure and density extrapolations are taken 
from neighboring internal nodes of the mesh. 

Step 2c: 

Artificial viscosity is applied. This is necessary to make the calculation stable. The 
underlying assumption of a discrete approximation to a continuum is that fields change 
slowly from mesh-point to mesh-point; without artificial viscosity even the continuum 
model develops discontinuities, so clearly this assumption would fail to be true for the 
discretized version. The artificial viscosity model is that of Lapidus[ll]. A change 6U in 

where the unit vector 1 is the local gradient of fluid speed: 

and the diffusion coefficient k is given by 

a 
ai 

k = CA,-(w. I) 

where C is a constant and Ae is the element area. 

ADAPTIVE REFINEMENT 

After the initial transients have dispersed and the flow has settled, the mesh may be 
refined. The criterion used for deciding which elements are to be refined is based on 
the gradient of the density. The user specifies a percentage of elements which are to be 
refined, and a criterion 
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Re = A,Vp 

is calculated for each element. A value Rc,it of this criterion is found such that the given 
percentage of elements have a value of R, greater than Rc,ig, and those elements are refined. 
The criterion is not simply the gradient of the density, because the strongest shock in 
the simulation would soak up all the refinement., leaving weaker shocks unresolved. With 
the element area, 4, in the criterion, regions will ‘saturate’ after sufficient refinement, 
allowing weaker shocks to be refined. Only when the artificial viscosity coefficient C is 
reduced will the shocks become narrower, allowing further refinement. 

Element t o  be refined 

Elments are bisected 
along the longest side 

Figure 3 Refmemen! algorithm for DIME; e.,ments are bisected on the .,ngest side and non- 
conforming nodes (circles) made. The elements opposite these are refined and so on until all 

non-conforming nodes are eliminated 

The refinement is done by the algorithm of Rivara[9], and is also explained in detail in 
Reference 7. Each nominated element is bhected by creating a new node at the midpoint 
of the longest edge and joining the new node to the opposite vertex of the element. This 
l int  stage is shown at the top of Figure 3. In general some of these new nodes will be 
‘non-conforming’ (marked with circles in Figure 3). A non-conforming node is one which 
causes a geometrical triangle to be a logical quadrilateral, since on the other side of the 
refined element is an angle of 180 degrees. The elements opposite the non-conforming 
nodes (the logical quadrilateral elements) are marked for refinement and bisected along 
the longest side. The process continues until there are no non-conforming nodes. 
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After refinement the mesh may be 'topologically relaxed"71. For each non-boundary 
edge of the mesh there is an element on each side of the edge, forming a quadrilateral with 
the edge being one of the diagonals. If the sum of the two angles opposite the diagonal is 
greater than 180 degrees, then the diagonal is switched to the other possibility. Now the 
sum of the opposite angles must be less than 180 degrees since the sum of all four angles 
of a quadrilateral is 360 degrees. This process is continued until no further relaxations 
are possible. The w o n  for this is that after topological relaxation the mesh is now a 
Delaunay triangulation (dual of a Voronoi tesselation), so that each node is logically 
connected to its nearest neighbors. For elliptic problems this is important because the 
stiffness matrix of a Delaunay mesh now has the desirable characteristic of diagonal 
dominance[l2], making the iterative solution of the finite element equations robust. 

EXAMPLE 

Figure 4 shows the flow-field resulting from Mach 3 flow over a step, computed with a 
32-node NCUBE hypercube. This problem is that used by Woodward and Colella[l3] 
in their benchmarking of compressible-flow algorithms. At the top is the mesh used 
for the computation, where the heavy lines mark splits between processors. Notice that 
each processor owns about the same number of elements. The lower three panels show 
velocity, density and pressure. There is a primary detached shock upstream, and part way 
down this primary shock, from the top of the wind-tunnel, a diffuse secondary shock 
splits from it. 

In Figure 4 the contour lines are somewhat ragged, especially toward the downstream 
(right) end of the wind-tunnel where the mesh is coarse. In doing the simulation the 
artificial viscosity coefficient must be chosen: if it is too small the contour lines become 
ragged and eventually the whole calculation becomes unstable; if too large the shocks 
widen and diffuse and detail is lost. 

It is difficult to know how to run this wind-tunnel simulation automatically; either 
with a predefined schedule of artificial viscosity, time-stepping and refinement, or some 
control process to manage these operating parameters. In particular it is difficult to know 
how far to run the simulation before refining the mesh, and to what extent to do so. 

TIMING 

Figure 5 shows timing results for 1, 4, 16, 64 and 256 NCUBE processors. The time 
per element per time-step is shown for the compressible flow algorithm against number 
of elements in the simulation. The curves end when the processor memory is full. Each 
processor offers a nominal 512Kb memory, but when all the software and communication 
buffers are accounted for, there is about 120Kb available for the mesh. 

The time taken is a sum of computation and communication contributions. For 
N elements divided among n processors we expect the number of elements to 
be N/n per processor so that the computation time per element is proportional 
to l/n. The communication time is dependent on the number and size of the 
messages. The size of the messages is proportional to the number of nodes at 
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Figure 4. Mach 3 flow over a step, coming in at the left of the picture. The 32-processor 
mesh is heavily refined in the vici?iify of the shocks 

processor-processor boundaries, which is proportional to (N/n)f . The communication 
time is also proportional to the greatest Hamming distance between the processors of 
the machine, which for a hypercube is log2 n, plus some constant for latency. I shall use 
the term speed-up in the sense of constant grain-size rather than constant problem size; 
thus speed-ups can be extracted by comparing the greatest speed from a given number 
of processors with the asymptotic speed of the single processor, the results being, 

Table 1 

pIocessors speed-up Efficiency 
4 2.9 72% 

16 12 75% 
64 36 56% 

256 112 44% 
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Figure 5 .  Timings for the compressible flow code with an NCUBE hypercube. This is a log-log 
plot of speed {elements processed per unit time) against the number of elements, with various 
numbers of processors. The speed is normalized to the asymptotic speed of a single processor. 
The curve for a particular number of processors should become $at as the communication 

time becomes smll compared with computation time 

It is clear from Figure 5 that boundary effects are still very important even when the 
memory of each processor is full; these speed-up values would improve greatly with 
faster communication. The efficiency is poorer for larger numbers of processors, because 
the communication protocol is designed to send messages from any processor to any 
other, so that the communication times have a factor log2 n. If the load-balancer and 
the communication protocol were designed to take advantage of the architecture of the 
machine, so that the mesh-neighbor processors were also machine neighbors, this factor 
could be eliminated, but at the expense of portability. 

FUTURE WORK 

As mentioned above a pressing need is for robust automatic control of the simulation; 
deciding when the false transients have passed and thus that it is time to refine, how 
much to refine, and what the artificial viscosity coefficient should be. 

The discretization of the boundary conditions leaves much to be desired, since the 
extrapolation from interior to boundary mentioned above is only a first-order p r o h s  
compared to the second-order advection solver used here, creating a large diffusion at 
the boundaries, possibly explaining the diffuseness of the secondary shock in Figure 4. 
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In addition to load-balancing the spatial mesh, the simulation should be load-balanced 
in time; meaning that different parts of the mesh should run at different time-steps. This is 
called dornain-~plitting[l41. The local time-step is controlled by the Courant condition, so 
for roughly uniform velocity, the time-step should be proportional to the element size. In 
the present implementation the time-step is a global minimum of this Courant condition; 
in the future each processor will have its own time-step. To keep synchronization, each 
time-step must be an integer quotient of some global maximum step, and it would be 
convenient if each time-step were to be forced to be a power of two multiplied by a 
global minimum time-step. 

A more accurate solver for compressible flow is flux-corrected uansport[l5]. In this 
case, a low-order scheme, such as that implemented here, is used for a predictor step, and 
a higher-order scheme also used for the step; the higher-order scheme adds non-physical 
oscillations which are removed using information from the lower-order scheme. 

The most desirable extension of this work would be a full three-dimensional solver. 
Unfortunately maintaining a fully unstructured mesh in 3D is much more difficult than in 
2D, partly because it is so hard to visualize a 3D unstructured mesh. Some work has been 
done with partially unstructured meshes in 3D[1]. As noted above, the 512Kb memory 
of an NCUBE processor is mostly taken with code and buffers, leaving little room for 
actual mesh, so that the boundary part is not negligible compared to the internal part. 
In23D this problem is exacerbated, because the surface area to volume ratio becomes 
N3 rather than the N i  in 2D. One solution is of course, a larger memory: the MarkIIIfp 
hypercube offers 40%Kb per processor. Another solution is faster communication, which 
is currently being installed. 
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