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Given a capable human being and a computer, it is possible to make an approximation
to the solution of a nonlinear di�erential equation. However, with the (usually correct)
assumption that the equation is analytically intractable, the result of the computation is
not the exact solution; indeed, it may be so far from the exact solution as to be completely
useless. We are interested in the relationship between the e�ort expended by the human
and the computer and the quality of the computed approximation to a partial or ordi-
nary di�erential equation. To be speci�c, we would like to think in terms of a cost-bene�t
analysis. The cost of the computation is a combination of the human e�ort and computer
resources used to obtain the approximation. The bene�t includes not only the computed
approximation, but it also includes an estimate of the quality of the approximation, that
is, an error estimate. It is our opinion that in computational science, as with the experi-
mental sciences, results should always be presented with some estimate of their accuracy.
In addition, however, there is another facet to error estimation: one cannot even attempt
a cost-bene�t analysis or e�ciency comparison of methods without an error estimate to
evaluate the results.

Let y(t) be the exact solution of a partial or ordinary di�erential equation

@y

@t
+ f(y; t) = 0;

with suitable initial and boundary conditions, where f may involve space derivatives. We
compute a numerical approximation Y with respect to a method of lines discretization of
the space-time domain. We use h(x; t) and k(t), respectively, to denote the size of the space
and time mesh at position (x; t). We emphasize that these may vary at di�erent points in
time and space, for example the timestep from time t to t+ k may change from one step to
the next. We compute an approximation by choosing a function from a �nite dimensional
space (such as polynomials) that approximately satis�es the di�erential equation in both
space and time. For example, the numerical solution might satisfy an approximation of
the di�erential equation in the form of a di�erence scheme or it might be chosen to be the
best solution of the equation among all functions in the �nite dimensional space in a �nite
element method. The error is e = y � Y and this article is about estimating its norm jjejj.
The norm may be chosen to emphasize error at some particular time and point in space,
an average over the whole space-time domain, or something else.

In the classical a priori error theory, we attempt to estimate the error before computing
the approximation by �rst bounding the error produced in a step and then assuming that
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errors accumulate in the worst possible way to bound the global error. We measure the error
of the approximation over a single timestep as an interpolation error, I, that is bounded
using Taylor's theorem

I � CnkhnDnyk+ Cmk
mkDmyk;

where Dn and Dm denote a combination of space and time derivatives of the appropriate
order for the accuracy, Cn and Cm are constants that depend on the method for computing
Y , and the norms are localized to the space domain and the current timestep.

We must then bound the e�ects of the accumulation of such errors over all the subsequent
intervals in order to bound the total error. We can analyze the e�ect of perturbations in a
solution of a nonlinear problem by studying the di�erential equation obtained by linearizing
around the solution. The coe�cient matrix for the linearized problem is the Jacobian matrix
@f=@y. If we write Jmax as the maximum norm of the Jacobian over \all possible values of
y", we can obtain a global error bound:

jjejj � eJmaxtmax I:

This is the traditional form of the a priori error bound, where the maximum is over all
previous timesteps. We call the exponential prefactor a stability factor because it re
ects
the stability of the solution to perturbations. It depends on both the solution and the
numerical method. In this a priori error bound, the stability factor is an exponential,
meaning that the error bound grows rapidly.

We would like to point out two things about this kind of result. The �rst is the list
of unknown, unknowable quantities: the high-order derivatives of the exact solution in the
Taylor estimate, and the range of the solution that is required to compute Jmax. The second
is that the result is pessimistic; it assumes that the error always accumulates constructively
rather than destructively, hence the growth of a perturbation is as rapid as possible. It is
this kind of error bound which spits in our faces by telling us that error of a well-crafted
CFD computation, for example, grows as something like exp(1015t). In the face of this, we
can choose between giving up computation altogether or paying no attention to the error
bound.

We now describe an alternative way to compute error bounds (see [1] and [3] for more
details). The goal is to obtain a sharp error bound: one that is within a factor two or three
of the true error rather than di�erent by hundreds of orders of magnitude. This superior
bound entails more computation because a linear system must be solved for each error
estimate, in addition to the solution of the nonlinear di�erential equation itself. It is an a

posteriori bound, meaning that the error is computed after the computation rather than
before. The bound has two parts: one measures the errors committed locally at each point
in space-time; and the other measures the e�ects of the accumulation of such errors. We
begin with the local behavior.

In the a priori analysis, we ask \How close is the approximation to the true solution?".
This question is answered using Taylor's theorem, and the result, as stated above, is a for-
mula that is di�cult to compute practically. Instead let us decide what we can compute,
and then relate this to the error norm. We ask the question \How well does the approxi-

mation satisfy the di�erential equation?". The answer is given by the residual R, de�ned
as:

R = k _Y + f(Y; t)k:
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This quantity is computable, since it is written in terms of low-order derivatives of the
approximation. R = Rx +Rt decomposes into space and time residual errors naturally.

The other part of the error bound, measuring the accumulation of error, is a property of
the equation and its true solution. The formulae relating residuals to error may be written
generically as:

jjejj � S(t)max R:
where S is a stability factor and the maximum is over all steps.

There are di�erent stability factors for di�erent kinds of error, such as the error in
discretization, and the error in initial conditions. These may be computed at some time t
by integrating the linearized system:(

_z(s) + (@f=@y)(y(s); s)z(s) = 0; t > s � 0;

z(t) = e(t)

where the Jacobian of f is evaluated at the solution y of the nonlinear system. The integra-
tion is backwards in time from t to zero, then S is expressed as a time-integral of a norm
of z.

We would like to draw an analogy between these error bounds and the process of solving
a system of linear equations Ax = b, where A is a matrix and x and b are vectors. To
determine the quality of an approximate solution X, the direct approach { estimating the
error kX � xk { is of course not computable. The alternative is to work with the residual
kAX � bk, which is computable. The relationship between error and residual is determined
by the condition number of the matrix: the error is bounded by condition number times
residual. The stability factor plays exactly this role for di�erential equations: it is the
\condition number" of the solution of the di�erential equation that we approximate.

The stability factors are not explicitly computable, because they are a property of the
(unknown) solution. Instead, we compute approximate stability factors from the numerical
approximation of the di�erential equation; justi�cation of these approximations and the
study of how to compute them e�ciently is an area of current research [1][3].

Mesh Adaptivity

We would like to choose a dynamically adaptive discretization which is as coarse as
possible to reduce the required computer resources, but at the same time keeping the error
bound below a desired tolerance. The error bound is written as a stability factor multiplied
by a maximum of the local residual error. As a result, we can be e�cient by keeping the local
residual error roughly constant on each local component of the space-time discretization.
Having done this, we can evaluate the stability factor, and hence the error bound.

The procedure above provides the error bound after the computation is �nished, because
we cannot compute either residual or stability factor until then. If, however, we want to
specify an error bound in advance, we must use a predictor-corrector strategy. If the
computed error bound is larger than the speci�ed error bound, the computation is redone
with a �ner discretization; if too small, we change our strategy for subsequent computations.
See [1].

This Seems Rather Complicated

But surely this is all much more di�cult than it needs to be { why not simply run a
canned solver with smaller and smaller timesteps, and using �ner and �ner spatial meshes,
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until eventually \it seems to have converged"? The end result of this approach is an
approximation together with numerical evidence that the approximation is not changing
with the mesh spacings. Of course it may indeed be a very accurate approximation, but
we do not know this because there is no estimate of error. On the other hand, it may
be very inaccurate: there are plenty of examples in the literature of systems that are not
pathological, but where the approach of reducing the discretization until there is no further
change can fail because of false plateaux, providing a mirage of convergence. This \brute
force" method also seems to be ine�cient in the following sense: if the approximation is
more accurate than the desired accuracy, then perhaps we should have used less resources
and obtained a result that is su�ciently but not excessively accurate. On the other hand,
if the approximation is not accurate enough, then it is not of much use and we should not
have spent our resources computing it.

In terms of the cost-bene�t analysis, the brute force method has a human cost, which
is the most expensive part of the human-computer team. The human must evaluate the
results of each run, decide if \convergence" has occurred, and if not, choose a new mesh
spacing. Surely it would be easier if the computer ran a little longer, yet came up with both
an approximation to the solution and a quantitative error estimate.

Numerical Results

We present some computations that illustrate the ideas in this article. All of the results
were computed with the error norm at 1% or better of the solution norm. Because stability
factors depend only on the equation and its solution, they are not only useful for making
sharp error bounds, but are also important tools for understanding the behavior of a solution
of a nonlinear problem, which in general means not only knowing the values of the solution,
but also knowing how perturbations to the solution behave. The stability factors are a
probe to do this. To illustrate the great variety of stability factors encountered in nonlinear
models, we present them for a selection of nonlinear problems. In each case, the classical a
priori bound, which grows exponentially, is misleading.

1. For the dissipative problem in Fig. 1(a), the standard a posteriori bound gives a
stability factor that converges to a �xed constant. With the proper choice of scheme,
the error actually tends to zero, and a specialized analysis for this problem can be
done. The a priori error factor however gives a bound of order exp(100t).

2. The stability factor for the Kepler problem, Fig. 1(b), grows on average quadrat-
ically, but oscillates around this average with the period of the satellite, with the
peaks coinciding with perihelion of the orbit. The stability factor increases and de-
creases exponentially inside each period, whereas the a priori estimate \sees" only the
exponential increase.

3. In the Lorenz system, Fig. 1(c), solutions oscillate between revolving around one
of the two �xed points, with the chaotic nature re
ected in the seemingly random
number of revolutions around one �xed point before switching to the other. The a

priori error bound predicts error growth on the order of exp(90t). However, when a
solution trajectory is orbiting one of the two �xed points (which is most of the time),
then the error growth is on the order of t1:4. When a solution switches from orbiting
one �xed point to the other, then the error grows rapidly. The �rst time this happens
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in the plotted solution is at t = 16, and the growth is re
ected in the growth of S(t).
This rapid increase in sensitivity causes the long time growth to be exponential on
average at a rate of approximately exp(:9t).

4. The forced Du�ng equation has two regimes of solutions. Certain initial conditions
lead to a chaotic solution, while the rest of the solutions converge to a stable periodic
solution. In Fig. 1(d), we plot a chaotic solution while 1(e) illustrates a solution that
converges to the periodic solution. The a priori error analysis treats both solutions
the same, predicting the usual exponential growth, yet it is clear from the �gures that
the stability of the chaotic and periodic solutions are vastly di�erent.

The Bistable Equation

The bistable problem with Neumann boundary conditions in one dimension reads:8><
>:
yt � �2yxx = y � y3; 0 < x < 1; 0 < t;

yx(0; t) = yx(1; t) = 0; 0 < t;

y(x; 0) = y0(x); 0 < x < 1:

(1)

The bistable equation is an illustrative example of nonlinear relaxation to equilibrium in
the presence of competing stable steady states. It is a model of many physical phenomena,
including motion of domain walls in ferromagnetic materials. The stable steady states are
y � 1 and y � �1, which are minimizers of the energy functional

R
1

0

�
�2y2x=2+(y2�1)2=4� dx.

For generic initial data, limt!1 y(x; t) is one of these steady states. However, this conver-
gence can be extremely slow because solutions of (1) can exhibit dynamic metastability.
In general, y forms a pattern of transition layers between the values 1 and �1, where the
thickness of each layer is of order �. The subsequent time scale for substantial motion of
the layers is exp(Cd=�), where C = O(1) and d is the minimum distance between layers or
between the layers and the boundaries. Metastable solutions are not local minimizers of
the energy, and thus are always dynamic. After a metastable period, one or more of the
layers disappear in a relatively quick transient. The system then forms a new metastable
pattern. This repeats until the eventual convergence to a steady state. The standard a

priori analysis predicts that errors accumulate at an exponentially growing rate on the or-
der of exp(Ct=�2) (� exp(1000t) for the � chosen below), essentially ruling out accurate
computation. The a posteriori error bound suggests that accurate computation is possible
for long times including both transients and metastable periods.

We discretize (1) in space using a second-order �nite element method based on piecewise
linear functions and lumped mass quadrature and using a �nite element approximation in
time. We plot the evolution of a solution starting from data with two metastable \wells"
with � = :03 in Fig. 2(a). The left well of the initial data is slightly thinner than the
right and collapses by the sides coming together around time 41, while the well on the
right collapses at time 141. The solution exhibits metastability during the time before 41
and between the two transients. In Fig. 2(b), we plot the stability factor S(t). S re
ects
the alternation of metastable periods, where S(t) is of order 1 and slowly increasing, with
the transient periods, which are predicted by the increase in S. After the transient, the
stability factor drops precipitously, indicating that the subsequent solution is essentially
independent of any previous error accumulation. When the solution �nally converges to
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the uniform equilibrium state, the stability factor is one, and all previous error due to
accumulation is removed.

Thermoviscoplastic Shear Band Formation

When a 
uid undergoes shear, there is viscous heating and a consequent rise in tem-
perature. The shear rate and heating may be spread uniformly through the sheared 
uid
or may be localized in a narrow "shear band", depending on how the viscosity of the 
uid
varies with temperature. Formation of a shear band depends on the viscosity decreasing
su�ciently quickly with temperature, in which case all the shear and consequent heating is
concentrated in the band. Most of the material is very viscous and undergoing no deforma-
tion, and there is a thin, hot, low viscosity layer lubricating the shear. The main features
of this phenomenon have been modeled by assuming a power-law dependence of viscosity
on shear rate; in the following example, we choose an inverse-square dependence. If the
shear happens very quickly, such as in a plastic-forming die or at a geological fault during
an earthquake, then thermal di�usion cannot dissipate the heat quickly. In the limiting
case of no thermal di�usion, there is a debate ([2]) over whether the shear-band model has
singular solutions in �nite time.

We transform the momentum and energy equations as follows:8>>>><
>>>>:

s� � 1

re
�=3sxx =

2

3
s
�
1� 3

p
rs2
�
;

r� = �2

3
r
�
1� 3

p
rs2
�
;

s� (0; �) = 0; s� (1; �) = 0;

s(x; 0) = s0(x); r(x; 0) = r0(x);

for s and r representing the transformed shear stress and temperature respectively, while � is
the logarithm of the time. This non-physical form has certain advantages for mathematical
analysis, including the existence of invariant regions and a conserved quantity. We discretize
with a specially constructed �nite di�erence scheme that preserves this structure.

The initial data has a smooth bump of height 1 and width 0.04 centered at x = 0:8, as
well as a small undulating perturbation throughout the x-domain. The perturbation was
added to test the structural stability of the shear band: we �nd that the band has the same
form with or without the perturbation.

In Fig. 3, we show the results of the numerical solution: the transformed temperature,
r, is plotted with a log scale with 8 orders of magnitude, against x and � . We can see the
temperature increasing in a narrow band where the initial conditions provided a nucleation
point. The computation was done with a time- and space-adaptive mesh, which has the
e�ect of maximizing the e�ciency of the computation by concentrating computer resources
where necessary, which turns out to be at the peak.

In Fig. 4(a), we plot the maximum height of r versus � for computations made on �xed
meshes with 32; 64; :::, and 16384 space nodes, together with the results of a computation
made with adaptive error control. The �xed mesh computations are plotted with dashed
lines and the solid line shows the results of the adaptive computation. Using �xed meshes
leads to incorrect conclusions about the rate of growth of the peak height of r unless an
extremely �ne discretization is used. Figure 4(b) illustrates how the number of elements
used in the adaptive computation increases with time. We get better results with far fewer
nodes in space. The placement of the nodes is visible in the plot of the solution in Fig. 3.
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(a) A sti� dissipative prob-
lem with three di�erent time
scales. Zero is a stable
solution.

Initial data (2,2,1)

Time
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S
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3

8><
>:

_y1 = �:01y1 � :99y2 + :99y3;

_y2 = �y2 + 99y3;

_y3 = �100y3:

(b) The Kepler two-body
problem for a satellite in
an eccentric, periodic orbit
around a planet.

Initial data (.4,0,0,2)

Time
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8>>><
>>>:

_y1 = y3;

_y2 = y4;

_y3 = �y1=(y
2

1
+ y2

2
)3=2;

_y4 = �y2=(y
2

1
+ y2

2
)3=2:

(c) The Lorenz system, which
is a well-known model for
chaotic behavior.

Initial Data (1,0,0)

Time
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8><
>:

_y1 = �10y1 + 10y2;

_y2 = 28y1 � y2 � y1y3;

_y3 = �
8

3
y3 + y1y2:

(d) A chaotic solution of
the forced Du�ng problem,
which is another model for
chaotic behavior.

Initial data (0,0)

Time
0 10 20 30 40 50 60 70

S
(t

)
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107

(
_y1 = y2;

_y2 = y1 � y3
1
� :15y2 + :3 cos(t):

(e) A solution of the forced
Du�ng problem that con-
verges to the stable periodic
solution.

Initial data (.640,1.17)

Time
0 50 100 150 200 250 300

S
(t

)

0

50

100
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200

(
_y1 = y2;

_y2 = y1 � y31 � :15y2 + :3 cos(t):
.

Figure 1: The Stability Factor Gallery
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Figure 2: Evolution of a metastable solution of the bistable equation and its stability fac-
tor, � = 0:03. Transients are marked by rapid growth of the stability factor. During the
metastable periods of extremely slow change, the solution is relatively stable to perturba-
tions. When it has converged to 1, it is insensitive to the accumulation of error.

Figure 3: Evolution of a shear band. The initial pro�le is a smooth bump of size 1 at
x = 0:8, together with an undulating perturbation. The shear band is structurally stable
to this perturbation, and grows at the same rate as without the perturbation.
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Figure 4: (a) Peak heights in r versus time for a series of �xed mesh discretizations (dashed
lines) and one adaptive discretization (solid line). (b) The number of elements versus time
for the di�erent computations. The adaptive computation gives the correct dynamics using
fewer elements and less computer time than the �xed mesh computations.
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