
0

Abstract
This paper concerns parallel, local computations with a data structure such a graph or mesh, which may be structured
or unstructured. The target machine is a distributed-memory parallel processor with vector or pipeline hardware on
the processors, but software based on voxel databases also runs efficiently on shared-memory and uniprocessor
machines with and without vector hardware.

A voxel database (VDB) is a distributed shared memory, where entities which share memory are those at the same
geometric position. A VDB may be thought of as a dictionary of position-subscript pairs, so that data may be
associated with points in space by using the subscript of that point as an index into data arrays. The use of subscripts
allows ease of programming and vectorization. The shared memory at each point is weakly coherent and may be
either single-writer, multiple reader, also known as the ghost node method; or multiple-combiner, multiple-reader
memory. The VDB may be sorted to put special points at the beginning or end of the subscript list, and also to reduce
cache-miss inefficiencies. Support is also provided for arbitrary distribution of data entities between processors for
load-balancing.

The idea of VDBs and the corresponding software tool provide a clear and efficient way to program a large variety of
mesh computations in Fortran or C, such that the execution of the program is independent of the distribution of data
to processors, and the mesh may be topologically adapted and load balanced.

As an example we discuss the implementation of an unstructured Finite-Element elliptic solver using a conjugate
gradient method. We also discuss the implementations of a finite-volume flux-split fluid solver and of local adaptive
refinement for meshes of simplices such as triangles or tetrahedra.

1. Introduction
In this paper we shall consider a method for writing geometrically local algorithms. Such an algorithm is one where
objects at the same geometric position may communicate: here such communication is effected by a shared memory
at that point.

This view of data movement is exemplified, but not limited to, the Finite Element method [1]. A Finite Element mesh
is a partitioning of the problem domain into elements, each of which is defined by a set of points in the domain, called
nodes. The basic structure is that of a set of elements, where each element is a set of nodes. The computational kernel
consists of each element reading and writing from and to its subset of the nodes. Writes to the nodes are separated
from reads of those data by a synchronization. Each element refers to a node by local numbering; for example the
nodes of a tetrahedron might be 1, 2, 3, 4. In addition to the local numbering, there must also be a global numbering,
so that the nodes may be thought of as shared memories. Two elements referring to the same node will refer to the
same global node number and thus share memory.

Thus we may split a Finite Element code into two parts, one which deals with the properties and nature of the data
stored with elements and nodes and the calculations done with those data, and another part which maintains the
shared memories at the nodes and supplies the mapping from local to global numbering. The latter part may be done
with a Voxel Database (VDB), producing code to run on a uniprocessor or on a distributed machine.

Finite volume methods may also be coded with a VDB. In this case the problem domain is also partitioned, but the
pieces are conventionally called cells rather than elements. Each cell reads data from neighboring cells in order to
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update itself. Suppose we associate the cell data with a unique point of the cell such as its center of mass. Then each
of these points is a shared memory, with one cell writing there and the neighbors reading.

A Set of Sets of Points

The data structure for a VDB is thus a collection of subsets of a set of points. We shall call these setsof points
pointsets. A tetrahedral Finite Element mesh, for example, is a set of all the nodes together with a set of pointsets
(elements) of size four. A graph may be represented as a set of nodes plus a collection of pointsets (edges), each of
which is of size two.

A set of pointsets may be thought of as a table of subscripts, such as that for the graph shown in Figure 1. This is a

spatial graph, meaning that each of its nodes is associated with a geometric point. Since the structure represented is a
graph, each pointset is of size two: the local numbering is at the left of the table. There are 12 pointsets at the top of
the table, and each table entry is the corresponding global number. The global numbering for the points may or may
not bedefragmented: meaning that the points are numbered sequentially from 1 to the number of points. In Figure 1
the point numbering is defragmented because the eight points are numbered 1, 2, ..., 8 rather than say 3, 6, 11, 17, 13,
2, 16, 77. When the point numbering is defragmented, we may set up a loop over the points rather than always
looping over pointsets and using the table of subscripts.

It should be pointed out that the above subscripts begin at 1, which is appropriate for the Fortran implementation of
VDBs: in the C implementation subscripts begin at zero.

Programming with Subscripts

High computer performance may be expected from a defragmented numbering. The defragmentation means that
vector or pipeline hardware may be efficiently used when cycling through the nodes, and reading data from a point
may be achieved with a single add and a memory access.

There may also be performance increases hidden in the language. Fortran is a language in which compiler-writers
strive to excel, not only because of its popularity, but also because the programmer is coerced into using arrays rather
than lists or objects, and the simple structure of an array gives great freedom for optimization and automatic
vectorization.

Unstructured data structures such as these are, unfortunately, subject to memory bottlenecks on many modern
processors. Such processors have a cache which is much smaller than the main memory, and peak arithmetic
performance can only be obtained when data is resident in the cache. But a table of subscripts implies selecting data
from all over the main memory, resulting in cache misses and a loss of performance. A good implementation of a
VDB can, however, improve this situation substantially by renumbering the points, so that when the pointsets are
used in order, most of the points required will already be in cache from the previous pointset.
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Figure 1: A graph represented as a collection of points and a collection of pointsets of size 2 (edges).
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Previous Work

The type of algorithms addressed by this paper are where pointsets read from, compute with, and write to data
associated with their points, where there is a synchronization of all the processors after a write and before a read of
the data which was written.

Let us suppose that the pointsets are distributed among the processors of a distributed-memory parallel machine, so
that each processor owns a subset of the pointsets, and each pointset is owned by exactly one processor. If we further
suppose that each point is owned by exactly one processor, then some points of a pointset may be in the memories of
different processors.

Previous work, such as the Kali [2, 3] language and the PARTI run-time library [4, 5], has succeeded in creating
effective user interfaces for efficiently running unstructured mesh algorithms on distributed machines. However, both
of these use static meshes; Kali compiles the code so that off-processor memory references are available when
needed, and PARTI sets up the communication strategy at run-time after the mesh definition has been read in: off-
processor references are fetched into an on-board cache before they are needed [6].

These methods, however, are based on static meshes, so that the complete computational mesh must be read in before
calculations can start, resulting in a serious sequential bottleneck. An application that can adapt its mesh can read in a
mesh of just a few elements, and adapt it to the necessary resolution in parallel, and furthermore adapt it locally as the
simulation demands more or less resolution [7, 8, 9].

We might interpret writing data to a point as sending a message, and reading as the sending of a message by the
neighbor. Because the messages are short, communication must therefore be overlapped with computation to achieve
efficiency. The datum may be pre-fetched before it is needed, requiring a lot of intelligence from the runtime library
[10].Alternatively, with an asynchronous dataflow language such as PCN [11], the application may be broken down
into many threads so that the processor always has something else to do during communication: the result is that the
source of inefficiency is shifted from communication to process switching.

An application written with VDBs leaves control of communication with the application by explicit synchronization
calls, keeping local copies of data in all the processors that need them. The copies may have all the same status (the
combining method), or may be copies of a master datum which are updated at synchronization. The assumption is
that data objects (pointsets) need only communicate (i.e. share memory) if they share a geometric point in space. A
VDB may be constructed, adapted and load-balanced in parallel with bottlenecks which are only logarithmic in the
number of processors.

Creating a VDB

First a VDB is created, specifying the number of dimensions of the space in which the points lie, and then some
points stored in it. When a point is stored by giving its coordinates, a subscript is returned. If that point has been
previously stored, the same subscript is returned as previously; otherwise it is the next available unused subscript.

Two points need not have exactly the same position to be regarded as the same point. In creating the VDB, the user
specifies a non-zerotolerance, such that any pair of points closer than the tolerance will be regarded as the same
point, and points further away than a small multiple of the tolerance will be regarded as different points. This small
multiple is three times the square root of the dimension of the space. Thus the tolerance is less than the smallest
expected distance between points.

Thus if new names are put into a newly created VDB, the return values are 1, 2, 3, ... (or 0, 1, 2, .. for the C
implementation). Finally the VDB is “synchronized”, which does nothing when running on a uniprocessor, but
establishes communication paths between processors for a distributed machine, and will be explained fully below.
This synchronization call may be thought of as making concrete all changes to the VDB made since the previous
synchronization.

A simple use of a VDB is a follows. Suppose an application is given a description of a mesh expressed as a collection
of pointsets, each consisting of some point positions. There may also be another file with records consisting of point
positions and data to be associated with them, which we shall ignore for the moment. To read the mesh description,
we initially create a VDB, and pass each point of each pointset to it and store the resulting subscripts. The code for
this example is presented in Section 3. We may then read in the file of points and attach data to the arrays using the
returned subscripts from the first stage.
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Software Design

The criteria used in the design of the VDB software are:

• The results of an application code should be independent of the distribution of data entities among the processors
of the parallel machine to make debugging possible;

• Shared-memory synchronization should be fast;

• Communication is explicitly initiated by the application code;

• Topological changes to the graph and load balancing should be possible, and preferably easy;

• Applications should be written with common programming languages such as Fortran or C, leaving control with
the application code rather than providing a callback service.

• The application data is kept in vectors rather than linked lists to facilitate vectorization;

• The code should be scaleable to massive parallelism.

The software discussed below is written with the Express parallel processing environment [12], with a Fortran or C
interface. The idea of VDBs is a generalization of the idea of local combining utilized in the DIME (Distributed
Irregular Mesh Environment) software [7].

We shall discuss how some common algorithms may be implemented with VDBs, the examples being a finite-
element solver on an unstructured mesh using the conjugate-gradient method, a flux-split finite-volume fluid solver,
and local topological refinement of an unstructured tetrahedral mesh by the Rivara algorithm [13].

2. Distributed Shared Memory
We replace the concept of a point by an equivalence class of points which share memory, where two points are
equivalent if they have the same position. Thus a point is actually a set ofalias points, each of which has the same
position.

The set of points of the pointsets owned by a processor are all within the processor, so that all accesses made by the
pointset are local. When a pointset in one processor wishes to access the data of one of its points, it accesses a copy of
the point (an alias) stored locally. The point has been replaced by adistributed shared memory [14, 15, 16], and as
with any shared memory, we must be careful that the different access mechanisms (different aliases) produce the
same results.

Coherence

The idea of shared memory requires some clarification, since there may be incoherence when several processors write
to the same memory location. A shared memory may havestrong coherence, meaning that as soon as a datum is
written by any processor, then any reader is guaranteed to read the updated datum. This implies that timing variations
between processors affect the results of the code, and we shall not consider this update method further.

Weak coherence means that code containsweak blocks[14]. A shared datum may only be read outside a block in
which that datum is written, and may only be written inside such a block. At the end of a weak block, there is a
synchronization [17] so that the effects of the writes may be reconciled.

Combining

Writing to a memory location implies replacing whatever in the location by something else. Another way to “write”
to a shared memory is not to allow the conventional idea of write, but instead allow onlycombining with the location.
An example of a combining operation is addition, so that a processor may add a number to a memory location. Thus
if several processors add numbers to the shared memory location then synchronize, the result is independent of order.
There is no need for global ordering of data access or singling out a processor as the one which is allowed to write.

Thus pointsets may read from their points, but may only combine with, rather than write to, a point. The combining
block is ended with a synchronization where the aliases are combined with each other by the VDB software, after
which that datum is available for reading.
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Updating

A VDB also allows a more traditional method of writing to shared memory, based on the idea of write permission,
which we shall callupdating. Only one processor has write permission to the memory at any given time. Of all the
aliasess at a given point, exactly one may write; this special alias of all those at a given position is the secretary alias.
More accurately, any may write, but after synchronization the value in the memory is the value written by the
secretary point.

3. Creating a VDB: Reading a File
A simple example was given above of using a VDB for reading a file describing a spatial graph. The code for this is
shown in Code 1. There arenedge  records in the data file, each representing an edge (pointset of size two), and we

suppose the points to be in 3-dimensional space. The VDB is created with a dimension ofidim and a spatial
tolerance , the “gravity flag”, a given maximum number of entries, and a buffer and its size for internal use, and an
integer tag for the VDB returned. The gravity flag indicates whether or not exact floating-point coordinates will be
given to the VDB or not. The point positionsfromnode  and tonode  are read in and stored in the VDB using
VFJOIN (VDJOIN) for single (double) precision coordinates, and the returned subscripts kept in a table. Finally the
number of points in the VDB is returned by the synchronization function, and data associated with the nodes (points)
of the graph may now be stored and retrieved.

Parallel Operation

This simple application also runs on a distributed memory parallel processor, except for the decision of which
processor gets which pointset. Either each processor may read a separate data file, or each processor could see all the
records from a single global file and decide which records belong to it, perhaps by a round-robin method. The
advantage of the latter is that the number of processors reading the file may be different from the number which wrote
the file.

At the left of Figure 2 is shown a graph of eight nodes. At the right is the same graph distributed among three
processors, each in a different shade of gray. Some points have been replaced by equivalence classes of alias points,
and each processor has obtained from the synchronization function the number of nodesnnode  as shown. The sum
of all these is 15, which is of course greater then the 8 equivalence classes of aliases.

4. Meshes
We have seen a spatial graph represented as a collection of pointsets (edges) each owned uniquely by a processor, and
each of which points to two shared nodes (points). We may generalize this to any collection of uniquely owned

real fromnode(idim), tonode(idim)
integer table(2, maxnode)
character buf(ibufsz)

c--Create the VDB
ivdb = VCREAT(idim, tolerance, 0, maxnode, buf, ibufsz)

c--Store the names
do iedge = 1, nedge

read(4, *) fromnode, tonode
table(1,iedge) = VFJOIN(ivdb, fromnode)
table(2,iedge) = VFJOIN(ivdb, tonode)

enddo
c--Synchronize the VDB

nnode = VSYNC(ivdb)
Code 1: Creating a VDB for a spatial
graph from a file.
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objects pointing to a subset of a set of shared objects. Figure 3 shows some examples of imposing additional structure

on a triangular mesh of two triangles.

At the left the mesh is viewed a graph, with a collection of edges each pointing to nodes; this is the structure used by
Mavriplis [18] in a Navier-Stokes solver. Next is a structure that might be useful for linear Finite Element
calculations, with element structures each pointing to the three nodes at the vertices of the element. Figure 3c shows
cells each pointing to three edge structures, which could be used in conjunction with the previous structure for
quadratic Finite Elements. Figure 3d shows a structure where each edge points not only at the nodes at its ends, but
also at the nodes opposite the edge. Such a structure would be relevant for the icosahedral algorithm for the shallow
water equations [19].

5. Combining: Sparse Matrix Multiply
The core of a linear or implicit finite-element code [1, 20] is the solution of a matrix equationAx = b, where the
elements of the vectorsb andx are associated with points, and the stiffness matrixA is a sum of local matrices, each
associated with a pointset. Iterative methods for solvingAx = b such as overrelaxation or conjugate gradient depend
on being able to multiply a vector by the stiffness matrix.

There are node arraysx  andAx, to hold the vector to be multiplied and the result respectively. Each element of each
of these vectors is one of the weakly coherent shared memories discussed above. Code 2 carries out the sparse

nnode = 5

nnode = 6

nnode = 4nnode = 8

Figure 2: A graph and its representation on three processors of a parallel machine.

b. d.a.

Figure 3: Four ways to use pointsets to represent spatial structure. a. Edges point to 2 nodes; b.
Elements point to 3 nodes; c. Elements point to 3 edges; d. Edges point to 4 nodes.

c.
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multiplication for the structure shown in Figure 3b when each pointset is of size 3. Each element is associated with a
3x3 local stiffness matrix; for each element, we extract a locally numbered vectorxloc  from the global vector x ,
multiply this by the local stiffness matrix to produce the locally-numberedAxloc , then increment the globally-
numbered result vectorAx by Axloc .

In this case we are using the combine method to store data in the shared memories, and the call toVCOMB in the last
line synchronizes the combine over aliases of the points in other processors.

One reason for showing this code is to demonstrate that the main loop over elements may occur in parallel. At first
sight it appears that this is not the case, since the value of the vectorAx after a loop iteration is dependent on the value
of Ax before the loop iteration. However, at each loop iteration we are only adding numbers toAx, and the sum of a
set of numbers is independent of the order in which the numbers are added in. Binary operations with this property,
such as arithmetic addition, arecombining operations.

The code contains a weak block with respect to the arrayAx, and values ofAx may not be reliably read inside this
block. The block is ended by the call toVCOMB, giving the size in bytes of the data to be combined, and the stride in
bytes, which is the separation between successive data elements. Before this call, each alias node has contributions
from elements which are on the same processor, but we would like each alias to have a value which is the sum of
contributions from all edges, which is precisely the case after theVCOMB call.

It is crucial that the method of combining data within the weak block (arithmetic addition) be the same as the
operation accomplished by theVCOMB call as indicated in the sum function passed to it. If this were not the case, then
results would not be independent of the distribution of the graph among the processors.

Arithmetic addition is not the only combining operation allowed on node data, as explained in the next Subsection.

real x(maxnode), Ax(maxnode), A(3,3,maxelmt), xloc(3), Axloc(3)
external fsum

c-- Set result to zero
do inode = 1, nnode

Ax(inode) = 0
enddo

c-- Weak block on Ax
do ielmt = 1, nelmt

do ivert = 1, 3
inode = table(ivert, ielmt)
xloc(ivert) = x(inode)

enddo
c Here multiply A(*, *, ielmt) by xloc(*) to get Axloc(*)

do ivert = 1, 3
inode = table(ivert, ielmt)
Ax(inode) = Ax(inode) + Axloc(ivert)

enddo
enddo
call VCOMB(ivdb, Ax, fsum, 4, 4)

c-- End weak block on Ax
end

subroutine fsum(a, b)
real a, b
a = a + b
end

Same Operation

Code 2: Sparse matrix multiply for an
unstructured triangular mesh.
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Definition: Combining Operation

An operation⊕ is a function of two membersa, b of a given setT and returns a member ofT. An operation is a
combining operation if the following properties of⊕ hold:

• (Identity) There is a memberi of T such thati ⊕ a = a,

• (Commutative) For alla, b in T, a ⊕ b = b ⊕ a,

• (Associative) For alla, b, c in T, a ⊕ (b ⊕ c)) = ((a ⊕ b) ⊕ c).

Other examples of combining operations are:

• Arithmetic addition and multiplication

• Logical AND and OR

• Maximum and minimum

• Concatenation of records (if the order of the records is not important)

If we write a simple loop to go through a list of numbers to find the total, the result is independent of the order in
which we go through the list, which is of course because addition is a combining operation.

Some combining operations, in particular arithmetic addition, are not exactly associative, but may be different in the
last bit or so. If it is essential that each processor reads exactly the same values, then an combine using addition
should be followed by another combine, but with maximum, which is exactly associative.

Message Passing by Combining

We have described a mechanism by which the processors of a parallel machine have a restricted kind of shared
memory. A processor may read from the copies of its points, or write in the restricted sense that they do not overwrite
the contents of the shared memory, but execute a combining operation with the memory. Independence of the
distribution of cells over processors is assured if every node-array is created by setting its value to the identity of a
combine operation (this is zero for arithmetic addition), then combining in other data, then using the same combining
function to combine over those nodes shared between processors.

Experience shows that many if not most numerical applications may be implemented with no more communication
than that provided by combining and updating operations. We should point out however that we may simulate a
loosely synchronous message passing machine using combining operations, so that there is more generality than
might be thought.

The architecture of this virtual machine is that of the mesh we have stored in the VDB. We may think of the pointsets
in Figure 3 as virtual processors, which may send messages to other pointsets with which they share a node.

The idea is simply to use concatenation as the combining operation; each pointset makes some messages, each with
an “end-of message” character, and combines this buffer of messages with an initially empty buffer in the nodes, with
the combine operation being concatenation. After the call toVCOMB, each pointset may read the messages (in some
arbitrary order) from the nodes.

6. Global Combining
Thus far we have described ways to dolocal operations in parallel, and we need a little more to make the VDB
mechanism a useful tool for parallel graph and mesh calculations. Consider for example implementing the conjugate
gradient algorithm [1] for solving a sparse matrix equationAx = b. There are two basic ingredients in this algorithm,
being matrix-vector multiplication and calculating scalar products. The former may be accomplished with Code 2 as
previously discussed, and the latter requires computing a global sum over all the nodes.

Figure 4 shows the graph of Figure 2, but with some of the alias points black and some gray. The black points are
secretary points, and there is exactly one of these for each equivalence class of points. Thus if we want a sum over all
equivalence classes, which would be independent of the distribution of pointsets to processors, we sum over secretary
points rather than all points. The functionVSECR fills an integer array with 1 if the point with that subscript is a
secretary node or else 0. The number of copies of a node depends on the distribution of cells to processors, but there
is only one representative for each equivalence class of nodes.
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The decision of which node of an equivalence class is the representative is made arbitrarily by the VDB software
during the call toVSYNC: there is a call to change this, but if two processors claim to be the secretary of the same
point, and error occurs.

Code 3 calculates the scalar product of the vectorss  and t , putting the result in the variabledot . There are two

statements in this code segment which would not be necessary for a uniprocessor code: theif  statement and the call
to VGLOB.

We begin by setting the variabledot  to the identity for arithmetic addition (zero), then loop through the points
adding the contribution from each point to the scalar product, which is the product of the elements of the vectorss
andt . Now each processor has a sum over the secretary points it owns, and we replace this by the sum over all the
processors of values ofdot  with the call toVGLOB. If the values ofdot  on four processors were 1, 4, 2, 5 before the
global combine, they would be 12, 12, 12, 12 afterward.

The if statement is thus because each point should only contribute once to the scalar product, rather than a number
of times depending on the distribution of pointsets to processors. In particular we may ask for the total number of
equivalence classes of points in the mesh, which would be the sum over processors of the sum over points of the
return values ofVSECR, a quantity independent of distribution.

The arguments toVGLOB are similar to those of the local combineVCOMB, except thatVGLOB does not need a VDB
tag since it is a global sum. This global combine is functionally identical to the global combine of Express [12].

Figure 4: For each equivalence class of point
aliases, there is exactly one secretary point,
shown in black. The number of classes is thus
the number of secretary points.

integer isecr(maxnode)
VSECR(ivdb, isecr)
dot = 0
do inode = 1, nnode

if(isecr(inode) .eq. 1) then
dot = dot + s(inode) * t(inode)

endif
enddo
call VGLOB(dot, sum, 4, 4)

Code 3: Global combine operation used to
compute a scalar product.
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7. Load Balancing, Defragmentation and Sorting
A load-balancer consists of two parts: a method of deciding which data entity should reside in which processor [9,21],
and a method of migrating the data entities to their new processors and reconnecting the distributed data structure.
This paper does not deal with algorithms for the former, but only with the migration process itself.

We assume that by some means that we have an array containing the processor number in which each pointset should
reside after the load balancing. For each pointset, we check if the new processor is the same as the current processor,
in which case no action is needed. If not, we package the pointset data and the data of its points into a message which
may then be despatched. During the message transit time, we may callVDSTRY to destroy the VDBs, freeing their
memory, and create new VDBs to hold the point data. Now we receive all the messages containing pointsets which
are to reside in this processor. For each of these we copy the pointset information, and callVFJOIN/VDJOIN  for
each of the points. Finally we callVSYNC to synchronize the new VDBs. The load-balancing process fragments the
point arrays, and they should now be defragmented.

Sorting the point arrays to minimize cache-miss inefficiencies is actually rather similar to load balancing, since the
same recursive bisection methods may be used for point renumbering, except within a processor rather than between
processors.

A clean user interface will be made for these processes in the near future.

8. Summary
In the previous Sections we have seen how to store a set of points in a VDB, and from each point extract an integer
which may be used as a subscript. In this way we may attach data to a geometric point in space. When the same point
is stored in the database by different processors of a parallel machine, a connection is set up between the processors
so that the data associated with that point is shared between the processors.

Each processor may read at any time from these shared memories, but changes to a shared memory must be made by
means of a combining operation or by having a representative called a secretary overwrite the others in its
equivalence class. When running on a distributed-memory machine, data cannot be read from memory locations that
have been combined or updated until the VDB is synchronized withVSYNC.

The Fortran interface to he VDB software is:

• VCREAT - To create a VDB (loosely synchronous),

• VFJOIN/VDJOIN - To store a point in the VDB, with single/double precision coordinates,

• VSYNC - To synchronize a VDB (loosely synchronous),

• VCOMB - To replace local data with data combined over the whole machine (loosely synchronous),

• VUPDAT - To replace local data with data from secretary aliases (loosely synchronous),

• VGLOB - To combine globally (loosely synchronous),

• VSECR - To fill an array with 1 if a point is a secretary of a class shared over processors, else 0.

• VNMEMB - To fill an array with the number of timesJOIN  was called at that position.

• VDELET - To delete a single point from the VDB,

• VDSTRY - To destroy the VDB and free the associated memory (loosely synchronous).

Those subprograms listed as loosely synchronous must be called in all the processors of the machine, not necessarily
at the same wall-clock time, but at the same logical place in the program flow [17].

The example used as a framework for describing the VDB software was an implementation of a linear finite-element
code, with a collection of cells initially distributed among the processors of the machine, which were then connected
together. The computational kernels of multiplication of a vector by a stiffness matrix and scalar product were then
presented, and timings are given in Section 12.

It should be noted that all data is retained in linear arrays rather than linked lists, so that vector or pipeline hardware
may be used if it is available; also that both data and program flow are controlled by the application.
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9. Implementation
In the introduction it was mentioned that one of the prime objectives of the VDB paradigm is that its implementation
should be as efficient as possible to utilize the full power of a parallel machine.

VDBs are set up to make the combine/update operations as fast as possible. The setup must happen when a mesh is
created, read in from a file, or when restructuring occurs such as adaptive refinement or load-balancing. The
assumption is that these processes are much less frequent than combining/updating; that an application will spend
much more time computing with a fixed mesh than with changing the mesh configuration.

The following information about an implementation of VDBs is not necessary for correct and efficient use.

The data structure for a VDB is a hash table [22]. When a point is passed toVFJOIN/VDJOIN , its is converted to
integer coordinates (a voxel) by dividing by the tolerance for the VDB, then a hash function finds a place in the hash
table where that integer point should be. If there is nothing at that place in the hash table or in the neighboring voxels,
it is a new point which is not in the database; a new voxel-entry is put in that place in the hash table consisting of the
voxel coordinates and the next available subscript, and the subscript returned. Alternatively, there may already be a
voxel-entry at that place in the hash table, or more generally a linked list of voxel-entries. The list is searched for an
exact match to the voxel; if it is found, the subscript of that voxel-entry is returned, or else the voxel is not in the
database, so a new voxel-entry is added to the end of the linked list.

The hash-table size is set to be the largest prime less than 0.05 times the maximum number of points given as an
argument when the VDB was created. The memory used by the hash table is four bytes times the table size. If the
hash table size is too small, the creation of a VDB will be unduly inefficient. A subroutine is provided to print
statistics about the hash table usage.

WhenVSYNC is called, all of the new voxel-entries are packaged into a message, and the messages passed from
processor to processor until each has seen each message. The message-passing is implemented by arranging the
processors in a ring, with messages sent in batches in the buffer provided in the call toVCREAT.

Each processor takes each voxel-entry from each other processor and looks it up in the hash table as above. If a match
is found, analias entry is attached to the voxel-entry, showing that another processor has been given a point in that
voxel, containing the number of the other processor and a pointer into the memory of that processor for the relevant
voxel-entry. There may be a linked list of such aliases in other processors attached to a voxel-entry.

In addition, a combine table is formed to make combining and updating as efficient as possible. The length of the
combine table is the same as the number of processors being used, and from each entry begins a linked list though
those aliases which point to the corresponding processor number.

10. Applications

Many Dimensional Problems

It should be pointed out that the dimensionality of the space is an input to the VDB software, so that code may be
written to simulate phenomena in 1, 2, or 3 dimensions. Higher dimensions may also be useful: for example a sphere
may be defined by the three coordinates of its center and its radius, so the sphere can be thought of as a point in a
four-dimensional space.

Mesh Boundaries

Usually in mesh calculations, boundary surfaces are treated differently from the interior (the following discussion
assumes a 3D mesh). There may be data associated with boundaries such as what type of boundary condition should
be applied or values of external fields driving the interior physics. There may be even be an algorithm requiring
communication within the boundary, such as solving a boundary element problem or finding the curvature of the
boundary.

First we need to find which faces of the mesh cells are boundary faces. This can be done by setting up a VDB of cell
faces: each cell uses the center of each of its faces as the point of shared memory. We useVMEMB to fill an array with
the number of times a point wasJOINed at that position, which is two for internal faces, 1 for boundary faces. The
VDB may now be destroyed if desired.
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These boundary faces form a two-dimensional mesh, and we may wish to form a VDB of boundary nodes and/or
boundary edges for solving problems associated with the surface mesh.

Finite-Volume Flux-Split Fluid Solver

Another application of meshes is in finite-volume methods [23,24,25]. In this case the computational kernel is that

• Each interior face (in 3D) of the mesh takes the data from the two cells which share that face, and transforms that
data with an approximate Riemann solver [24.

• Now each cell takes the data from each of its faces, and transforms its own data using the face data.

We would form a VDB of centers of faces as above. By exchanging centers of mass of cells which share each face,
cells in other processors may be considered ghost cells, and their data updated with the update mechanism. Now we
may loop through the faces applying the Riemann solver, using the ghost-cell data where that cell is in another
processor, or else obtaining the data locally if possible.

Quadratic Finite Elements

Solving a finite-element problem with higher-order elements than linear makes no major changes to the code
presented in Code 3. For the example of quadratic triangular elements, each element contributes to six nodes rather
than three. Now points corresponding to not just the vertices of each triangle, but also the midpoints of the edges are
sent to the database, and each local stiffness matrix is 6x6 rather than 3x3.

11. Local Refinement of Simplex Meshes
One of the major advantages of unstructured over structured meshes is the ability to adapt the mesh to improve
resolution at a place in the simulation which needs it. So far we have only discussed static meshes, and now we show
that the VDB paradigm is capable of supporting topological changes to the mesh structure. We shall be considering
for this example meshes consisting of simplices, meaning a triangular or tetrahedral mesh. The following discussion
is appropriate to both.

Adaptive refinement of a simplex mesh may be accomplished by the algorithm of Rivara [13], which is illustrated for
triangles in Figure 5. The application code selects a set of cells to be refined, based presumably on either user input or

on the data representing the state of the simulation.

The first panel of the Figure shows a triangular mesh with two cells marked by shading, which are the cells that are to
be refined. Now we loop around the following cycle until there are no more marked cells:

1. Each marked cell is bisected by a line (plane) passing through the midpoint of the longest edge of the simplex,
and through the opposite vertex (vertices).

2. Each cell examines its edges looking for an edge that has been bisected by another cell which shares the edge.
If any are found, the cell is marked for refinement.

3. If there are no marked cells, the refinement is finished, or else go back to (1).

Each panel of Figure 5 shows the situation at the end of subsequent cycles. The final panel shows the refined mesh.

Figure 5: Stages of the Rivara refinement algorithm used to create a graded mesh. The algorithm is for general
simplex meshes: here illustrated in two dimensions.
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More formally, we may consider each cell to have one of three states,’marked’, ‘unmarked’ or ‘deleted’, and each
edge to have one of two states, being ‘deleted’ or ‘undeleted’. We loop through the cells, setting the state to ‘marked’
or ‘unmarked’ depending on whether refinement is required for that cell or not. All edges begin as ‘undeleted’.

In step (1), we loop through the cells looking for those whose state is ‘marked’. The states of this cell and its longest
edge are set to ‘deleted’ and two new unmarked cells are created. For each of these new cells, some edges are
identical to those of the original cell, and the new cell points to these; there is one (three) of these for each new cell in
2D (3D). Some new edges, including the two with half the length of the one which has been bisected, are created with
the state ‘undeleted’ for the new cells to point to; there are two (three) of these for each new cell. These new edges are
passed toVJOIN to obtain subscripts for them.

Between steps (1) and (2) is a call toVSYNC to connect the new edges into the VDB of edges. Now we combine over
edges withVCOMB, taking the logical OR of the edge states, so that if any cell changed the state of an edge to
‘deleted’, then cells which share that edge can find out.

Steps (2) and (3) are as above, where the each cell checks for edges marked ‘deleted’, and if there is one, changes its
state to ‘marked’. If there are any marked cells, then repeat the loop, or else we may actually delete all the cells and
edges whose state is ‘deleted’ withVDELET.

This refinement algorithm, together with an unrefinement algorithm in preparation, will enable coding of unstructured
multigrid applications. A clean user interface for addressing simplex meshes will be made.

12. Timing
Times are shown in Figure 5 for the sparse-matrix multiply code of Code 2. An unstructured triangular mesh is being

adaptively refined by the algorithm above, and load-balanced when the ratio of maximum to minimum number of
cells per processor exceeds 1.5. The same sequence of refinements was carried out with different numbers of
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processors on the 512-processor Intel Touchstone Delta, and on a 64-processor Ncube2, in each case continuing until
no more memory was available. The largest mesh, on 512 Delta processors, was 6.5 million cells.

The upper diagonal lines show the computation time for the matrix multiply, the lower lines show the time taken to
synchronize the combine, which is the communication inefficiency of the matrix multiply. Notice that the
communication times are 100 times less than the calculation times when the memories are full. These timing results
were obtained with no optimization of point numbering, and therefore the computational kernel is probably unduly
slow due to cache-miss rather than the communication being especially fast. We hope to improve these timings
considerably.

It is interesting to note, however, that on the calculation part of the matrix multiply, the i860 processor in the Delta
machine is only 6.5 times faster than the Ncube2 processor for this application which is bottlenecked by memory
fetches rather than arithmetic speed.

13. Conclusions
Given sufficiently flexible software, an unstructured mesh is a powerful method for a computer to deal with a
complex geometry because it is a framework of simple geometric entities such as tetrahedra or hexahedra. Such
software is difficult to write, and even more difficult to write if it is to be robust. Distributed parallelism can produce
a very fast and cheap computer, but seems to add immensely to the already difficult software costs. The goal of this
paper is to show that parallelism need not add excessively to software cost while retaining the speed of the parallel
machine.

This is done by separating the mesh algorithm from the parallelism, so that separate software modules may be used
for the distinct tasks of mesh calculation, manipulation, communication and load balancing.

A rule of thumb with software is that most of the code is occupied with what takes a small proportion of the execution
time, and a relatively small proportion of the code (the ‘computational kernel’) takes most of the time. In the case of
unstructured mesh codes, the complicated software which takes little actual time is the creation, refinement and load-
balancing of the mesh, and the kernel is calculation and combining/update operations. Thus in the VDB paradigm, the
creation and connecting of the mesh involve perhaps surplus communication in exchange for the convenient
assumption that data may be referenced by a geometric point rather than a subscript. On the other hand, extra time is
taken by the VDB software during this setup to make the combining operation as efficient as possible.
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