
December 31, 1997December 31, 1997

DIME

Distributed Irregular Mesh Environment

Roy Williams

California Institute of Technology

For having first to civilise a space
Wherein to play your violin with grace.

 GWENDOLYN BROOKS



Distributed Irregular Mesh Environment 0 of 56

1.0 What DIME is ..................................................................................................................... 2
1.1 Triangular Meshes and Refinement 2
1.2 Programming Environment 3
1.3 What DIME is Not 3

2.0 Getting Started ....................................................................................................................5
2.1 Hardware 5
2.2 Software 5
2.3 Installation 5

3.0 Running a DIME program ..................................................................................................7
3.1 Reading in a Mesh 7
3.2 Menus 7
3.3 The Logical Mesh 8
3.4 Refinement  8
3.5 The User Program 8
3.6 Parallel Operation 9
3.7 Load Balancing 10
3.8 Scripts 10

4.0 The Components of DIME ................................................................................................12
4.1 Cubix and DIME 13
4.2 I/O Modes 13
4.3 Loosely Synchronous Programming  14
4.4 Reading and Writing Meshes 14

5.0 Boundaries and Domains ..................................................................................................16
5.1 Boundary file format 16

6.0 Curvetool ...........................................................................................................................19

7.0 Meshtool ...........................................................................................................................21
7.1 Meshtool Theory 21
7.2 Meshtool in Practice 22

8.0 Mesh Structure ..................................................................................................................25
8.1 Sequential Structure 25
8.2 Parallel Structure 25

9.0 Refinement, Relaxing and Topological Relaxing .............................................................28
9.1 Rivara Refinement 28
9.2 Topological Relaxation 29
9.3 Relaxation 29

Contents



Distributed Irregular Mesh Environment 1 of 56

10.0 Programming .....................................................................................................................30
10.1 Menus 30
10.2 Accessing the Mesh 31
10.3 Parallelism 32
10.4 Global Data 34
10.5 Boundaries 34
10.6 Callback Functions 36
10.7 Graphics 36

11.0 References .........................................................................................................................38

12.0 DIME Menu Tree ..............................................................................................................39

13.0 Meshtool and Curvetool Menu Tree .................................................................................40

14.0 DIME structures ................................................................................................................41

15.0 balance, set_balance, balance_orb ........................................................................................42

16.0 refine, refine_fraction, set_refine, refine_func ...................................................44

17.0 swops, swops_func .............................................................................................................................46

18.0 distort, sqdist ..................................................................................................................................47

19.0 menu_add_function, menu_add_menu .........................................................................................48

20.0 draw, draw_elmt, arrow, disp_erase, color ....................................................................49

21.0 contor, slow_contor, elmt_contor ............................................................................................50

22.0 fmax, fmin, fsum, imax, imin, isum ....................................................................................51

23.0 get_double, get_gin, get_int, get_string ......................................................................53

24.0 user_read, user_write .....................................................................................................................54



What DIME is

Distributed Irregular Mesh Environment 2 of 56

1.0 What DIME is

The Distributed Irregular Mesh Environment1 is a programming environment for creating,
manipulating and performing calculations on an unstructured triangular mesh. The mesh
covers a two-dimensional manifold, whose boundaries may be defined by straight lines, arcs of
circles, or Bezier cubic sections.

The same code runs on a Unix workstation or a MIMD distributed-memory parallel processor.

A coarse mesh is interactively created with a sequential machine using the Delaunay
triangulation2; this mesh is sufficient to resolve the topology of the model boundary. The
coarse mesh is loaded into a single processor of the distributed machine, then dynamically
load-balanced and adaptively refined as the calculation progresses.

DIME has been used for transonic flow simulations3,4, variational calculations with quadratic
finite elements5, Monte-Carlo simulations of liquid-membrane theory6, and Boundary Element
calculations of the electrical properties of certain fish7.

1.1 Triangular Meshes and Refinement

Figure 1 shows two unstructured triangular meshes covering a disk, and contour plots of a

function at the resolution of each mesh. The lower right plot shows more detail of the function
because the mesh is adapted at the place where the function is complex, revealing the detail

Figure  1 Two triangular meshes and resulting contour plots



What DIME is

Distributed Irregular Mesh Environment 3 of 56

there. The idea of DIME is to use the mesh to discretize space, with the discretization at higher
resolution where necessary. The higher resolution may be put in at the start or adaptively as the
calculation progresses.

The mesh consists of a set of triangles orelements, andnodes, which are the points where sev-
eral elements meet. Elements and nodes are the basic data structures of DIME, and a user ap-
plication for DIME generally consists of loops over all the elements which take data from their
neighboring nodes, store it and put it back in the nodes, or vice versa with loops over the
nodes.

1.2 Programming Environment

The control of the mesh by a user is achieved by writing a C program, consisting of two parts:
structure definitions and a set of functions. The functions are associated with menu buttons, so
that the program may be linked with the DIME library and run interactively. The program may
also be run in batch mode with a script file.

Programming constructions are macros such as FORALLNODES(node) ...
NEXTNODE(node), which is a loop over all the nodes of the mesh.

The user may access and modify data by code such asnode->user->pressure = p;
which is an assignment to the variable pressure  in the data space of the nodenode .

Refinement is accomplished with code such as

FORALLELMTS(elmt)

set_refine (elmt, < truth value>);

NEXTELMT(elmt)

refine();

which is a loop over all elements, and the truth value isTRUE orFALSE depending on whether
that element is to be refined or not. The parallel call torefine()  actually refines the mesh,
interpolating the user data to put sensible values into the user data space of new nodes or
elements which may be created.

Load balancing for a parallel computer may be achieved in the same way with calls to
set_balance  to give each element a new processor in which to reside, then a parallel call to
balance()  to move the mesh between processors.

Since it is rather difficult to assign new processors to the elements in parallel, a function
balance_orb  is provided to balance the mesh by Orthogonal Recursive Bisection. See the
manual pages for more details.

1.3 What DIME is Not

At present DIME is not able to remove nodes and elements from a mesh: the application
should start with a relatively coarse mesh and compute with it, refine it and load-balance it
until the mesh is sufficiently detailed. DIME cannot do for example a moving front problem,



What DIME is

Distributed Irregular Mesh Environment 4 of 56

where the mesh should be fine at the front and coarse elsewhere, since as soon as the front
moves, the mesh would have to coarsen once the front has passed.

DIME is not good at moving mesh problems such as Lagrangian fluid dynamics8, where the
nodes of the mesh move in some way. If a node moves outside the group of elements which
surround it, the mesh will be ‘tangled’ and the code may crash. Movement which does not
violate this constraint is possible; however the topological relaxation process (Section 9.2)
must be regularly applied if the mesh is to keep moving. This is fine sequentially, but in
parallel this involves moving elements from processor to processor, and is thus rather
inefficient.

DIME is restricted to two dimensional meshes, though these may be embedded in some higher
dimensional space. A future version of DIME will have the ability to distinguish between
different regions of a manifold, and to deal with non-planar two-dimensional topologies such
as a cylinder or torus.

I hope to extend the concepts and methods of this manual to a three-dimensional version of
DIME for tetrahedral meshing of complex geometries. Most of the difficulty here is the
definition of a 3D boundary, which is considerably more complex than the definition of a 2D
boundary, and also that the graphics tools must be much more sophisticated for visualization of
3D phenomena.



Getting Started

Distributed Irregular Mesh Environment 5 of 56

2.0 Getting Started

2.1 Hardware

DIME runs in parallel on the computer systems which support the Express parallel
programming environment9, and it should run sequentially on any machine which runs UNIX.
This has been verified for Sun workstations, PC’s with Xenix, the Macintosh II, and the Cray
Unicos environment.

The parallel systems supported by Express are (at date of writing):

■ Transputer boards from Definicon, Levco, Meiko, MicroWay, Quintek

■ Meiko Computing Surface

■ NCUBE and NCUBE/2 systems

■ Symult S2010

■ Up to 8 Cray processors

You will also need a mouse and a color graphics display. For hard-copy, a PostScript10 printer
is needed.

2.2 Software

To run a DIME program in parallel, the Express parallel programming environment should be
installed.

To run sequentially, you need a device which supports the ParaSoft Plotix9 graphics package,
which is rather elementary but quite portable. You may of course run on a single processor of a
parallel machine with Express. Plotix can run on

■ An X-windows server

■ A Sun workstation under Sunview

■ A Tektronix 4105 or emulator

■ The Macintosh II

■ A PC with an Enhanced Graphics Adapter

You may also use DIME without Express by linking with either the Sunview or X-windows
Plotix libraries supplied with DIME, and running on a Sun workstation or X server.

2.3 Installation

Make an empty directory calleddime  and copy in all the DIME source code. You should add
the following two lines to your.cshrc  file:

setenv DIME ‘ <directory name>’

set path = ($DIME/bin $path)



Getting Started

Distributed Irregular Mesh Environment 6 of 56

where<directory name> is the name of the directory into which you copied the source
code.You may need to change some of the file names in the fileMakefile.defs  which
define where the various compilers and the Plotix library live. The default configuration is for
an X-windows version of DIME. You may now make the source code for your workstation by
typing

make seq

which make the sequential toolscurvetool  andmeshtool , the sequential DIME library,
and the examples. For parallel machines you may type

make C for Cray systems

make N for NCUBE systems

make S for Symult systems

make T for Transputer systems

This will make the DIME library and the examples for your parallel machine.

An executable which runs on the workstation has the suffix.seq , and one for your parallel
machine has the suffix.C , .N , .S , or .T  as the case may be.



Running a DIME program

Distributed Irregular Mesh Environment 7 of 56

3.0 Running a DIME program

Assuming that the DIME source code and examples are installed (see Section 2), go to the
examples directory$(DIME)/examples/simple , and typesimple.seq . You should
see a graphics window appear, as shown in Figure 2, with a blank drawing area to the right, and
a menu area to the left. The window in which you invoked the program is a command area, in
which you may type text and in which messages appear from the code. DIME announces that it
is running, and the number of processors which are in use, in this case one.

You are now ready to run a program which can read a boundary definition and mesh from a
file, refine it, and draw a contour plot of a function on that mesh. The program can also
adaptively refine the mesh according to the complexity of the function it is contouring, and
load-balance the work among any number of processors.

3.1 Reading in a Mesh

First we need to read in the definition of a domain which is to be meshed, and a coarse mesh
which has been created over it. The programmeshtool  is used to interactively create a
coarse mesh on a domain, and is described in Section 7.

Click the mouse button on the menu item “DIME”, and the menu display shows a new list of
menu items. Click “Readmesh”, and the promptBoundary File name?  appears in the
command window. Reply with the name simple ; the system adds the default suffix .bdy  to
this name, looks for the filesimple.bdy , and reads it in. You are prompted for a mesh file in
the same way: replysimple  again, and the mesh filesimple.mesh  is read. You should see
a triangular mesh appear in the drawing area. The bounding box of the mesh is printed in the
command region: in this case (0,0) to (1,1); it is a unit square.

3.2 Menus

DIME menus are arranged in a tree structure. Each menu item corresponds to either a submenu
or a function in the program. These functions and submenus may have been defined either by
DIME or by the user. Thus we may think of the code that is running as a dictionary of
functions, each of which may be accessed by a menu button. The default DIME part of the
menu tree with its functions is described after the References. The user part of the menu tree is
of course determined by the user, and may be selected by clicking “USER” in the root menu.

By convention, submenu names are all capitals, and items that cause other action lower-case
with initial capitals.

The root menu is that shown in Figure 2; all the submenus look similar except for an extra
entry at the top “TO_ROOT” which escapes from the submenu back to the root menu.



Running a DIME program

Distributed Irregular Mesh Environment 8 of 56

You might like to try moving around the menu tree, and seeing what some of the items do.

3.3 The Logical Mesh

There is a more abstract view of the mesh which shows the internal structure better. First erase the
first view of the mesh from the screen, by clicking “TO_ROOT” to get back to the root menu, then
“Erase” to erase the screen, then “DIME” to get back to the DIME menu. Now click
“Logicalmesh”.

Instead of just showing the edges of the mesh, we see red triangles, which are the elements,
connected to nodes, which are the star-shaped collections of lines between the elements.

3.4 Refinement

Click the menu item “Rectrefine”, and you are prompted for the desired mesh spacing (try 0.2), and
to define a rectangle by clicking the mouse at first at one corner, then the diagonally opposite
corner. Each element whose center is within the chosen rectangle, and which has a side longer than
the desired mesh spacing, is refined. The process continues until each edge of each of the elements
in the rectangle is shorter than the chosen mesh spacing. We can thus refine the mesh explicitly by
choosing a mesh spacing and a region.

3.5 The User Program

Go back to the root menu by clicking “TO_ROOT”, then to the “USER” menu. This is the part of
the code specific to the user code, and the functions you find here are defined in the program

Figure  2

USER
DIME
SCRIPT

Terse
Pause
Erase
Quit

ZOOM

% simple
*****************************
* This is DIME
* Running on 1 processor
*****************************
Pick Menu Item

Graphics window

Command window

Menu



Running a DIME program

Distributed Irregular Mesh Environment 9 of 56

simple.c  in this directory, rather than part of the general DIME function library. In Section
10 we shall see how to write such programs.

Click “Contour”, and a contour plot should appear of a function which is smooth at the top
right of the screen, and more complex to the bottom left. If you refined the mesh earlier to a
spacing of 0.2, the bottom left part of the function will be quite indistinct because the mesh
spacing is not fine enough. Try clicking “Adaptrefine” and “Contour” alternately. The mesh is
only refined at the lower left corner where it needs to be, and not at the top right, where there is
already sufficient resolution to see the function.

As you keep on refining the mesh, everything starts to slow down as the machine has more and
more mesh to keep track of and contour. Perhaps we should try using a parallel machine, if one
is available.

3.6 Parallel Operation

There should also be a parallel version of thesimple  code in the examples directory. We
assume here that Express is properly installed on your system, that the machine which you are
logged on to is a host to a parallel machine that runs Express, and that the parallel machine is
properly booted and available, and able to draw on your screen. If you are using a transputer
machine, the parallel executables have the suffix .T ; for other machines there are different
suffices. The Cubix server is part of Express, and is used like this to download and start a
distributed application such assimple.T :

% cubix -d2 -TX simple.T

where the-TX o ption indicates that the graphics is to be sent to an X-windows server; the
option -Tsun is for Sunview graphics, and-Tega  for a PC with EGA screen. The
option -d2  option indicates the logarithm to the base two of the number of processors to be
used; in this case we use four processors.

DIME only runs if the number of processors is a power of two: this is because of the
Orthogonal Recursive Bisection method for load balancing, which splits the mesh into two,
then each half into two, then each quarter into two, etc.

The only difference in this case from the sequential use of DIME is that the banner announces
that DIME is running on four processors rather than one processor. There may also be some
messages before the DIME banner, which are from Express: typically a sequence of letter ‘b’s,
one for each 512 bytes as the executable code is downloaded to the processors of the parallel
machine, and a message ‘Loaded, starting’.

We may continue as before. Click “DIME” then “Readmesh”, then replysimple  to both
prompts. Again the mesh is read in, but this time to only one processor of the machine. We
could carry on as before refining and contouring, but we would only be using one processor,
while the other three are idle.



Running a DIME program

Distributed Irregular Mesh Environment 10 of 56

3.7 Load Balancing

The extra ingredient for parallel operation is load balancing, which is the splitting of the mesh into
more-or-less contiguous groups of triangles, with approximately equal numbers in each group, one
group for each processor.

Go to the DIME menu and click “Balance”. In the command window should appear:

Splitting on channel 0 *****

Splitting on channel 1 **

Now erase the screen (“TO_ROOT Erase” as before), and click “Drawmesh” in the DIME menu.
The mesh is redrawn, but with two differences. First the edges of the mesh are not all blue, but
some are red, where the red edges divide the mesh into four quadrants. A red edge is a division
between processors: each quadrant corresponds to the ‘domain’ of one of the four processors
executing the code. There is also a more subtle difference from the sequential version; the drawing
of the mesh is done processor by processor. First the domain of one processor is drawn, then that of
the next, and so on.

A view of the logical structure of the mesh can be obtained with the “Logicalmesh” menu option.
You might want to erase the screen first, using the sequence “TO_ROOT Erase”. This view of the
mesh shows the divisions between the processor domains more clearly.

Now to do some real computation. Go to the USER menu (via clicking “TO_ROOT” in the DIME
menu), and try “Adaptrefine” and “Contour” a few times. Notice that one processor (at the lower
left) is getting all the new mesh, because that is where most of the refinement is occurring. We need
to redistribute the mesh more fairly among the processors, using the “Balance” function (in the
DIME menu).

Try repeating the sequence “Adaptrefine TO_ROOT DIME Balance TO_ROOT USER Contour” a
few times. You might want to include the function “Memory” from the DIME menu which gives an
inventory of the memory consumption of each processor. Try running through this cycle a few
times. As the memory usage increases, a virtual memory machine such as a workstation will find
extra memory, but the disk will grind a lot as the swapping occurs. With a parallel machine though,
one processor will eventually run out of memory; it can now do nothing but call a halt to the entire
program by broadcasting an abort signal.

You may notice that the graphics is considerably slower with the parallel machine than when the
program runs on a workstation, because the graphics commands must make their way through the
parallel machine, out to the host machine, perhaps through a network and eventually to the screen.

3.8 Scripts

While it is good to have an interactive menu system to run the code and see the results on the
screen, one would also like the ability to encapsulate interactive sessions into a file for later
playback. The script mechanism provides the following capabilities:

■ To run the application without the graphics display, either because it is not wanted or
because it is not available.

■ To run in batch mode without human interaction.



Running a DIME program

Distributed Irregular Mesh Environment 11 of 56

■ To encapsulate frequently-used sequences of menu choices.

A script may be invoked or created from the menu, it may be altered or extended with a text-
editor, or it may be used on the command line when executing the application. The steps
outlined above are contained in a script calledsimple.script . You can use this either by
typing

% simple.seq -f simple

for the sequential version, or

% cubix -d2 -TX simple.T -f simple

for the parallel version. You may also execute the code as before with no command-line
arguments, then click “SCRIPT” and “Use_script” as soon as the graphics window is available.

You may make a script file by clicking “Make_script” in the SCRIPT menu, and from that
point on all menu commands and user input is logged to the script file until you click
“End_script”.

A script file is just a listing of the menu labels that were clicked with any typed input included,
and may be adjusted or created with a text editor.

DIME understands the-f  switch on the command line to run from a script, and also the -g
switch:

■ -g2 ⇒ run with graphics and menus

■ -g1 ⇒ run with graphics and no menus (only with a script file)

■ -g0 ⇒ run with no graphics (only with a script file)

Anything else on the command line is passed to the user code (see Section 10.0).



The Components of DIME

Distributed Irregular Mesh Environment 12 of 56

4.0 The Components of DIME

Figure 3 shows the structure of a DIME application. The shaded parts represent the
contribution from the user, being a definition of a domain which is to be meshed, a definition of
the data to be maintained at each element, node and boundary edge of the mesh, and a set of
functions which manipulate this data. The user may also supply or create a script file as
explained in Section 3.8.

The first input is the definition of a domain to be meshed. A file may be made using the format
described in Section 5, or may be made by the sequential programcurvetool , which allows
straight lines and cubic splines to be manipulated interactively to define a domain. This
program is described in Section 6.

Before sending a domain to a DIME application, it must be predigested to some extent, with
the help of a human. The user must produce a coarse mesh which defines the topology of the
domain to the machine. This is done with the sequential programmeshtool , which allows
the user to create nodes and connect them up to form a triangulation.

The user writes a program for the mesh, and this program is loaded into each processor of the
parallel machine. When the DIME functionreadmesh()  is called, or “Readmesh” clicked
on the menu, the mesh created bymeshtool  is read into a single processor of the machine,
and then the functionbalance_orb()  may be called (or “Balance” clicked on the menu) to
split the mesh into domains, one domain for each processor.

Script File

User Functions

Structure definitions

DIME library

Meshtool

Boundary File

Mesh File

User Interaction

C

U

B

I

X

Figure  3 Major Components of DIME

Curvetool



The Components of DIME

Distributed Irregular Mesh Environment 13 of 56

The user may also call the functionwritemesh()  or click “Writemesh” in the menu, which
causes the parallel mesh to be written to disk. If that mesh is subsequently read in, it is read in
its domain-decomposed form, with different pieces assigned to different processors.

4.1 Cubix and DIME

The Cubix server9,11 is part of Express9 and it is this which makes it easy to write a parallel
application such as DIMEwhich also runs on a sequential machine. The parallel machine
works by having each processor send messages either to other processors or to the host
machine; it is this host which carries on a dialogue with a user. Parallel programs are often
written in two parts, being a processor program and a host program. The host program is
responsible for access to peripherals such as the graphics screen, disks, printers, etc., and may
be tailor-made for the particular application running on the array of processors.

Cubix takes a different approach, which is to make the host program an invisible general-
purpose server, capable of opening and closing files, starting up other processes on the host
machine, or drawing on the user’s graphics screen. When a processor wishes to print
something on the user’s screen, it simply callsprintf() , the usual C printing function,
rather than sending a message to the host, which would be interpreted and would cause the
print to occur.

A Cubix parallel code thus looks very much like a sequential program, except that the program
is running in each processor of the parallel machine; we may think of a sequential program as
one running on a 1-processor parallel machine.

Since it is not possible to program the host with a Cubix program, the programmer is forced to
make everything parallel, so that sequential bottlenecks are eliminated.

This section is not meant to give a complete description of Cubix; for more details see the
Express literature9.

4.2 I/O Modes

There are two ways for I/O such as printf()  andscanf()  to occur in DIME, being
single andmultiple mode.

Single mode is when all the processors are to send and receive the same data, for example in
the following dialogue with the user:

% How Many Iterations to run?

% 20

% What is the Tolerance?

% 0.001

Each processor calls printf()  to print the prompt message, but it only appears once, and
each processor receives the same values (20 and 0.001) when it calls scanf()  to get the
response. This is the default mode for DIME, and the DIME functions expect all open file
pointers to be in this mode on entry to a function.



The Components of DIME

Distributed Irregular Mesh Environment 14 of 56

Multiple mode is for I/O where each processor sends or receives its own value. For example
four processors may produce a memory summary:

Processor 0: Available memory 1278932 bytes

Processor 1: Available memory 677892 bytes

Processor 2: Available memory 1046722 bytes

Processor 3: Available memory 1133457 bytes

and the code for this would be

fmulti(stdout);

printf(“Processor %d: Available memory %d bytes\n”,

procnum, memory);

fsingl(stdout);

The variable procnum  is an external variable, and is an identifying number telling the
program which processor it is running on. The call tofmulti  changes the mode of the
standard output stream to multiple mode. Notice the return to the default single mode after the
print statement. For more details on I/O modes see the Cubix literature9.

4.3 Loosely Synchronous Programming

DIME programs runloosely synchronously11. This means that when certain functions are
called (those which involve communication), all the processors of the machine must call the
same function. This is also called Barrier synchronization. An example is thebalance()
function, which splits the mesh into equal pieces for the processors. This is obviously a
cooperative venture, and if any processors are not involved, the others will be waiting for
messages that never arrive and the machine deadlocks.

This does not mean that the processors must call the function at the same wall-clock time, just
that if one processor calls that function, all the others must eventually do so.

When writing to a file pointer in multiple mode, each processor is saving up the bytes produced
in a buffer; only when the loosely synchronousfflush  call is made does the data make its
way to the user. Similarly with graphics: each processor stores up the graphics until the loosely
synchronoususendplot  call is made, which flushes the graphics output to the screen. See
the Express documentation for more details.

4.4 Reading and Writing Meshes

A DIME program reads a mesh file which was produced either by the meshing program
meshtool  or by a DIME program. A mesh file carries with it the number of processors which
produced it, and can only be read by a machine with that number or more processors. Since
meshtool  is a sequential program, its meshes may be read by a parallel machine with any
number of processors. If a DIME program is running on P  processors and writes out its mesh,
that mesh file may only be read by a machine with P or more processors.

When a parallel machine reads a mesh which was written by P processors, it is read into the
first P processors of the machine. For meshes made bymeshtool , P is 1, and the mesh must



The Components of DIME

Distributed Irregular Mesh Environment 15 of 56

not be too large to fit into a single processor of the machine.meshtool  is intended to make a
mesh which has enough nodes and elements to correctly represent the topology of the domain
being meshed, with the serious refinement to a computational mesh done in parallel once this
coarse mesh has been divided up among the processors.

When a mesh is read or written, the user has the opportunity to read or write her own user data
to be associated with the nodes, elements and boundaries of the mesh, using the callback
functionsuser_read  anduser_write , as described in the manual pages and Section
10.6.



Boundaries and Domains

Distributed Irregular Mesh Environment 16 of 56

5.0 Boundaries and Domains

Figure 4 shows an example of a DIME boundary structure. The filled blobs arePoints, with
Curves connecting the points. Each Curve may consist of a set of curve segments, shown in the
Figure separated by open circles. The curve segments may be straight lines, arcs of circles, or
Bezier cubic sections.

5.1 Boundary file format

Each of the Points and Curves may have a name, which may be used by the DIME code to
assign boundary conditions or other information during the simulation.

There is a file with suffix.bdy  which defines the Points and Curves of a boundary. This file
may be produced with the interactive programcurvetool  or with a text editor. This file is
read in by meshtool  which creates a coarse triangulation for the specified domain, and
outputs a file with the suffix.mesh .

A boundary file consists of a set of tokens separated by white space characters (space, tab or
newline). A set of tokens begins with a keyword, which may be:

■ ‘‘Point’’: following this is a Point name and a pair of numbers, being the
coordinates of the Point.

■ ‘‘Curve’’: following this is a Curve name, the name of the Point at the beginning
of the Curve, a set of curve segments, and the name of the Point at the end of the
Curve.

Figure  4 Boundary Structure



Boundaries and Domains

Distributed Irregular Mesh Environment 17 of 56

■ ‘‘End’’: signifies the end of the boundary file. This should be the last token in
the file.

For specifying curve segments there is a stack of numbers and the notion of a current point. At
the beginning of a Curve specification, the coordinates of the first Point of the Curve are
pushed on to the stack. Whenever a number is encountered during Curve specification, it is put
on the stack. Interspersed with the numbers may be tokens which create curve segments. When
the segment has been created, the stack is cleared and the coordinates of the end of the newly-
created segment are put on the stack. The segment creation tokens are:

■ “Lineto’’: The stack should contain 4 numbers, which are interpreted as the
coordinates of the beginning and end of a straight line.

■ ‘‘Arc’’: The stack should contain 5 numbers, interpreted as the coordinates of
the center of an arc of a circle, the radius of the arc, and the start and end angles
of the arc, measured anticlockwise from the x-axis. The arc is described
anticlockwise.

■ ‘‘Arcn’’: Same as Arc except the arc is described clockwise.

■ ‘‘Curveto’’: Eight numbers are taken from the stack, being the coordinates of
four control points x0, y0, x1, y1, x2, y2, x3, y3 for a Bezier cubic section10.
The resulting curve is tangent to the line (x0, y0) - (x1, y1) at (x0, y0), and
tangent to (x2, y2) - (x3, y3) at (x3, y3), and is guaranteed to stay inside the
convex hull of the four points.

Following is an example of a boundary description file, which is a square with a hook shaped
hole in it:

Point lower_left -40 -40

Point upper_left -40 40

Point upper_right 40 40

Point lower_right 40 -40

Point lower_corner -7 -4

Point upper_corner -7 2

Curve left lower_left -40 40 Lineto upper_left

Curve upper upper_left 40 40 Lineto upper_right

Curve right upper_right 40 -40 Lineto lower_right

Curve lower lower_right -40 -40 Lineto lower_left

Curve t1

lower_corner

-3 -8 -3 6 -7 2 Curveto

upper_corner

Curve t2

upper_corner

-7 -14 16 90 0 Arc



Boundaries and Domains

Distributed Irregular Mesh Environment 18 of 56

9 14 Lineto

7 14 2 0 180 Arc

5 -16 Lineto

-7 -16 12 0 90 Arcn

lower_corner

End

The boundary defined by this file is shown below.

There are some restrictions on boundary definitions:

■ A Curve may not begin and end at the same Point.

■ Curves may not have zero length.

Figure  5 Boundary ‘‘Hook’’ Defined Above



Curvetool

Distributed Irregular Mesh Environment 19 of 56

6.0 Curvetool

The programcurvetool  is for the interactive production of boundary files. With
curvetool  you may create Points and connect them together with Bezier cubic sections and
straight lines..

Figure 6 shows three Points, shown as squares, with three lines connecting them. One is a
straight line, another is a Bezier section, and the third is a pair of Bezier sections with continu-
ity and continuity of slope between them. At the junction of the two sections is a cross, which
is asection continuity mark or SCM.

Each end of a cubic section is drawn with a tangential line at the end. The ends of these lines
are the twoknots for the section, so that a section is defined by four points: two end Points and
two knots. The section is tangent to the line to the knot and contained in the convex hull of its
four defining points. The lines from an SCM to its two knots must then be 180 degrees apart to
ensure continuity of slope at the SCM.

A Point may be created with the menu option “Addpoint”, then click at the place where the
Point should be. Two Points may be connected by clicking “Connect”, then selecting the two
Points to be connected by clicking near them with the mouse.

A connection between Points is initially made as a straight line. This is not quite correct:
curvetool  treats a straight line as a degenerate cubic section: it is only when the boundary
file is written that curvetool  checks to see if the section is actually straight, in which case
it is written to the file as a line rather than a cubic section. The straight-line connection between

Figure  6 Points and Curves in Curvetool



Curvetool

Distributed Irregular Mesh Environment 20 of 56

two Points actually has the two control points hidden under the line at one third and two thirds
of the distance along the line.

A curve may be adjusted by clicking the option “Adjust”, which fills the menu area with color
and puts curvetool into Adjust mode. Clicking inside the colored menu area putscurvetool
back into the normal menu mode. While in Adjust mode, you may select a Point, knot or sec-
tion continuity mark, and move it. The first click finds the closest of these entities to the place
you clicked and highlights the entity in red. The second click is the place to which the entity is
moved.

When a Point or section continuity mark is moved, it carries its associated knots with it, and
when a knot associated with an SCM is moved, the opposite knot is rotated to keep the conti-
nuity of slope condition true.

A section may be split into two sections with an SCM between them with the menu option
“Split”, then selection of the section to be split.

A section may be converted to a straight line by clicking “Straighten”, then selecting a section;
the knots are moved to the one third and two thirds positions on the line.

Clicking the option “Postscript” causes a request for a file name; the suffix .ps  is added and
the current set of curves at the current scale is written the file for printing by a PostScript de-
vice.

The option “Redraw” draws the current set of curves with small squares for the Points and the
knots shown; whereas “Drawcurves” draws just the curves.

The option “Write_bdy” causes a request for a file name; the suffix .bdy  is added and the
current set of curves is written to the file for ingestion bymeshtool  and DIME.

The option “Explicit” means that when in Adjust mode, a Point, knot or SCM is selected with
the mouse as usual, but the new position is given by typing coordinates rather than clicking
with the mouse. Clicking “Explicit” again toggles back to interactive mode.

In the “EXTRAS” submenu are options for naming Points and Curves for later use by a DIME
application (see Section 10.5), and also options for creating a grid of specified size on the
screen, and for creating a snap interval for rounding mouse clicks to the nearest point of the
snap grid.

There is no ‘undo’ feature in curvetool: for detailed work it is best to start a script file right at
the beginning, so that in case of problems, you may quit the program, remove the last few lines
of the script file, and run the script to get back to just before the error.

WARNING: If Curves intersect each other, the Curves will no longer define a domain, and
meshtool  will not be able to make a triangulation.



Meshtool

Distributed Irregular Mesh Environment 21 of 56

7.0 Meshtool

The programmeshtool  is for taking a boundary definition and creating a triangulation of
certain regions of it. The graphical interface has the same look as a DIME program.

7.1 Meshtool Theory

The programmeshtool  adds nodes to an existing triangulation using the Delaunay
triangulation2. A new node may be added anywhere except at the position of an existing node.
Figure 7 illustrates how the Delaunay triangulation (thick gray lines) is derived from the
Voronoi tesselation (thin black lines).

Each node (shown by a blob in the Figure) has a “territory”, or Voronoi polygon, which is the
part of the plane closer to the node than to any other node. The divisions between these
territories are shown as thin lines in the Figure, and are the perpendicular bisectors of the lines
between the nodes. This procedure tesselates the plane into a set of disjoint polygons and is
called the Voronoi tesselation.

The Delaunay triangulation may be derived by connecting those nodes whose territories have a
common border. This procedure does not always produce a unique triangulation of a set of
nodes, the ambiguity arising from the question of whether territories that meet at a corner are
touching or not. Part of the ambiguity may be resolved by demanding that only triangles of
non-zero area be produced. Given this, we take any of the available triangulations. For
example, four nodes at the corners of a square may be triangulated with the diagonal running
either way, andmeshtool  may produce either one arbitrarily.

Figure  7 Voronoi Tesselation and Resulting Delaunay Triangulation



Meshtool

Distributed Irregular Mesh Environment 22 of 56

The Delaunay triangulation merely triangulates a set of nodes with no reference to the
boundary structure of the domain we wish to mesh. We would like to classify the nodes as
being associated with the Points or Curves of the domain, or neither; and also to classify the
edges of the mesh as being associated with the Curves of the domain or not12.

When a new node is added to the triangulation, it carries a label about whether it lies on a Point
or Curve or neither. If it lies on a Curve it carries the arc-length measured along the Curve from
its start Point to the position of the node. Each node that lies on a Curve has a pointer to the
next and previous node (in the sense of arc length) which is on that Curve. We may determine
if the topology of the mesh is equivalent to that of the given domain by asking if each node is
mesh-connected to the next and previous nodes, and if not to place a new node on the Curve
whose arc length is the mean of the two who should be connected.

This is the function of the menu option “Triangulate” inmeshtool : to check the equivalence
of the boundary and the mesh topologies, and if necessary add new nodes until they are
equivalent. The green lines in themeshtool  display show where mesh edges should occur,
black shows actual mesh edges, and magenta shows the desired boundary.

In addition to the topological equivalence, there is another condition that the mesh should
satisfy in order that DIME’s refinement algorithm not fail. This is discussed in the next
Section, and requires a certain amount of user input.

The practical consequence of all this is that the actual boundary, in magenta, should run close
to the mesh boundary, in green. If not, new nodes should be added on the boundary near the
discrepancy.

7.2 Meshtool in Practice

As soon as meshtool has started, a boundary file should be read in, by clicking “Readbdy” and
supplying a file name.

meshtool  operates by inserting nodes at the Points of a boundary description, on the Curves,
or other places. The first thing it does is to put in a node at each Point of the boundary, and at
the midpoint of each Curve. Thus the initial display is the boundary itself plus a perhaps
confusing collection of black, green and magenta lines.

Click on the menu option “Triangulate” to create the minimal triangulation of the given
boundary description, such that the topology of the mesh is equivalent to the topology of the
boundary description. There may be places such as at the top of Figure 8 where the mesh does
not seem to be quite correct.

The boundary description shown with a heavy line, does not satisfactorily match the mesh
boundary, shown with a gray line. The solution is to put extra nodes into the mesh, perhaps at
the positions shown by the arrows. The result is shown at the bottom of Figure 8, where the
mesh boundary now closely matches the model boundary. If such corrections are not made at
this stage, then refinement of the mesh will fail during the execution of the DIME program.
More precisely, it is sufficient that the mesh boundary should match the model boundary in the
following sense; if the model boundary is completely contained in the elements which share a
mesh edge.



Meshtool

Distributed Irregular Mesh Environment 23 of 56

Clicking the menu option “Addpoints” causes a blue stripe to appear over the menu area. When
the stripe is present, mouse clicks are interpreted as new nodes to be added to the mesh, until
the click is in the stripe, at which point the menu is active again.

Figure  8 Topologically Correct But Insufficient Mesh, with addition of new nodes

Incorrect

Correct



Meshtool

Distributed Irregular Mesh Environment 24 of 56

Similarly, clicking the option “Edgenodes” creates a magenta stripe; further mouse clicks are
interpreted as nodes to be added on the model boundary. The node is added at the closest point
to the mouse position which lies on the model boundary.

After adding nodes, it is a good idea to click “Triangulate” again, which checks that the
topology of the mesh is equivalent to the boundary topology. If necessary new nodes are added
to make it so.

When the triangulation is complete, a mesh file may be created with the “Writemesh” option.
You will be asked for a file name, and the suffix .mesh  is automatically added and the file
opened. You are prompted to click the mouse somewhere inside the region you wish to mesh.
If all goes well, green triangles fill the required region, the mesh is written, and the file closed.



Mesh Structure

Distributed Irregular Mesh Environment 25 of 56

8.0 Mesh Structure

8.1 Sequential Structure

In Figure 9 is shown a triangular mesh covering a rectangle, and in Figure 10 the logical
structure of that mesh on a single processor. The logical mesh shows the elements as shaded
triangles and nodes as blobs. Each element is connected to exactly three nodes, and each node
is connected to one or more elements. If a node is at a boundary, it has a boundary structure
attached, together with a pointer to the next node clockwise around the boundary.

Each node, element and boundary structure has user data attached to it, which is automatically
transferred to another processor if load-balancing causes the node or element to be moved to
another processor. DIME knows only the size of the user data structures. Thus these structures
may not contain pointers, since when that data is moved to another processor the pointers will
be meaningless.

Just as there is a distinction between nodes and elements for the two-dimensional mesh, so
there is a conceptual difference between boundary nodes and boundary elements for the one-
dimensional boundary. However one dimension is a special case: for each boundary node there
is a boundary edge between it and the next node clockwise; and for each boundary edge there
is a node which is the one immediately anticlockwise of the edge. Thus DIME needs only one
boundary structure, which may be used for boundary node data or boundary edge data.

8.2 Parallel Structure

Figure 11 shows the structure of the mesh when it is split among four processors. Each element
is owned by a processor and still has three neighbors, but some of the nodes have been split.
The shaded ovals in the Figure arePhysical Nodes, each of which consists of one or more
Logical Nodes. Each logical node has a set ofaliases, which are the other logical nodes

Figure  9 A mesh covering a rectangle



Mesh Structure

Distributed Irregular Mesh Environment 26 of 56

belonging to the same physical node. The physical node is a conceptual object, and is
unaffected by parallelism; the logical node is a copy of the data in the physical node, so that
each processor which owns a part of that physical node may access the data as if it had the
whole node.

DIME is meant to make distributed processing of an unstructured mesh almost as easy as
sequential programming. However, there is a remaining ‘‘kernel of parallelism’’ which the user
must bear in mind. Suppose each node of the mesh gathers data from its local environment (i.e.
the neighboring elements); if that node is split among several processors, it will only gather the
data from those elements which lie in the same processor and consequently each node will
only have part of the result. We need to combine the partial results from the logical nodes and
return the combined result to each. This facility is provided by a macro in DIME called

Figure  10 The Logical Structure of the Mesh of Figure 9

Figure  11 The Logical structure of the Mesh Split Among Four Processors



Mesh Structure

Distributed Irregular Mesh Environment 27 of 56

NODE_COMBINE, which should be called each time the node data is changed according to its
local environment. See Section 10.3 for more details.



Refinement, Relaxing and Topological Relaxing

Distributed Irregular Mesh Environment 28 of 56

9.0 Refinement, Relaxing and Topological Relaxing

9.1 Rivara Refinement

The Delaunay triangulation2 used bymeshtool  would be an ideal way to refine the working
mesh, as well as making a coarse mesh for initial download. Unfortunately, adding a new node
to an existing Delaunay triangulation may have global consequences; it is not possible to
predict in advance how much of the current mesh should be replaced to accommodate the new
node. Doing this in parallel requires an enormous amount of communication to make sure that
the processors do not tread on each others toes13.

DIME uses the algorithm of Rivara14 for refinement of the mesh, which is well suited to
loosely synchronous parallel operation. Figure 12 illustrates the process. First a number of
elements are nominated for refinement, marked by a letter R in the top left of the Figure. For
each of these elements, a new node is placed at the midpoint of the longest edge of the element.

The mesh is no longer triangular though: on the other side of the edge with the new node is an
element with four nodes, one of which is T-shaped ornon-conforming (marked in the Figure
with a blob). Now each of these elements with non-conforming nodes is labelled for
refinement, and again a new node is placed at the midpoint of the longest edge.

The process is continued until there are no more non-conforming nodes. When an element is
refined, there may be no need to actually create a new node if the element on the other side of
the longest side has already created one. Notice how only two elements were initially

R
R R

R

R

R

R

R

Figure  12 Rivara Refinement



Refinement, Relaxing and Topological Relaxing

Distributed Irregular Mesh Environment 29 of 56

nominated for refinement, which led to eight being refined in order to maintain the integrity of
the mesh.

Whenever a new node is created, the user has a chance to interpolate user data from the
neighborhood to be placed into the new node and elements. In addition, the decision about
which is the longest side depends on a distance metric, which may be user controlled by
providing a functionsqdist , which returns the square of the distance between two nodes.

9.2 Topological Relaxation

The Delaunay triangulation has certain desirable properties when the mesh is to be used as a
Finite Element mesh. In particular, the Laplacian operator for linear elements is diagonally
dominant, resulting in considerable speedup of some iterative solvers15.

Once a Delaunay triangulation has been refined by the Rivara method, it is no longer a
Delaunay triangulation of the nodes. The process of topological relaxation changes the
connectivity of the mesh to make it a Delaunay triangulation.

Each non-boundary edge of the mesh has a triangle on each side, and is thus the diagonal of a
quadrilateral. If the sum of the two angles opposite the diagonal is greater than 180 degrees,
then the diagonal is flipped to the other possible position in the quadrilateral. Since the sum of
all four angles of the quadrilateral is 360 degrees, this diagonal will not be flipped back.

Topological relaxation consists of examining each non-boundary edge, and flipping it if
necessary until no more flips can be made. The user may provide a callback function
swops_func to interpolate element data whenever this flip occurs.

9.3 Relaxation

It is usually desirable to avoid triangles in the mesh which have particularly acute angles, and
topological relaxation will reduce this tendency. Another method to do this is by moving the
nodes toward the average position of their neighboring nodes; a physical analogy would be to
think of the edges of the mesh as damped springs and allowing the nodes to move under the
action of the springs.

The nodes are treated differently depending on whether they lie on Points or Curves of the
domain boundary, or neither. The nodes at Points do not move. Nodes that lie on neither Points
nor Curves move half the distance to the average position of their neighboring nodes.  Nodes
that lie on Curves move to a point corresponding to the average arc length of the nodes before
and after them on the Curve, so that they slide along the Curve.

The nodes are relaxed in an arbitrary order, so that the result depends on the splitting of the
mesh between processors. Also, it may be desirable to relax the mesh several times, to try to
approach the state where each node is actually at the average position of its neighbors.



Programming

Distributed Irregular Mesh Environment 30 of 56

10.0 Programming

The program that you write to make a DIME application is to be run in each processor of a
parallel machine: the same program runs in each processor, but with different pieces of mesh
under the control of the different processors.

A DIME program consists of a special functionuser_main , which is called as soon as
DIME has set itself up, and some other functions which take no arguments and returnint . In
addition there must be three structures defined, which describe the data the user wishes to
identify with each node, element and boundary of the mesh. Each of these structures must have
a size at least eight bytes. The minimum DIME program is

#include “dime.h”

struct user_node {char unused[8];};

struct user_bdy {char unused[8];};

struct user_elmt {char unused[8];};

user_main(user_menu, argc, argv)

MNUPTR user_menu;

int argc;

char **argv;

{

DIME_PREAMBLE;

}

When user_main  is called, a menu stub is passed, plus any program arguments not
recognized by DIME. The macro DIME_PREAMBLE is necessary to pass to DIME the sizes
of the user structures; the size is all that DIME knows about the user structures and is necessary
so that it can allocate space for these whenever new nodes and elements are created.

The user structures SHOULD NOT CONTAIN POINTERS, since when a structure is moved
from processor to processor, these pointers would be meaningless.

The program above, when compiled and linked to the DIME library, is sufficient to read in a
boundary and mesh file (previously created withmeshtool ), to decompose the mesh among
several processors, to refine, relax and topologically relax the mesh, and to draw various
pictures of the mesh.

10.1 Menus

Suppose we wish to add two functions which count the number of nodes and elements
respectively. We would replace the code inuser_main  with:

int ecount(), ncount();

DIME_PREAMBLE;

menu_add_function(user_menu, “Count_elmts”, ecount);

menu_add_function(user_menu, “Count_nodes”, ncount);



Programming

Distributed Irregular Mesh Environment 31 of 56

which appends the strings ‘‘Count_elmts’’ and ‘‘Count_nodes’’ to the menu labelled ‘‘USER’’,
and associates the relevant function with each. We will show the code for these functions in the
next Section.

We may also add a new menu subtree like this,

MNUPTR freddy;

int jimmy();

freddy = menu_add_menu(user_menu, “FREDDY”);

menu_add_function(freddy, “Jimmy”, jimmy);

so that the label FREDDY appears in the user menu, and when this is selected, the single
option “Jimmy” appears, which would call the functionjimmy  if selected. In addition the
option “TO_ROOT” is available in all the submenus.

WARNING: Labels for menu options should not contain spaces; use an underbar instead.

10.2 Accessing the Mesh

The functionsecount()  andncount()  could be coded as:

ecount()

{

ELMTPTR elmt;/* Pointer to element */

int nelmt = 0;

FORALLELMTS(elmt)

nelmt++;

NEXTELMT(elmt)

fmulti(stdout);

printf(“Proc %d has %d elmts\n”, procnum, nelmt);

fsingl(stdout);

}

ncount()

{

NODEPTR node;/* Pointer to node */

int nnode = 0;

FORALLNODES(node)

nnode++;

NEXTNODE(node)

fmulti(stdout);

printf(“Proc %d has %d nodes\n”, procnum, nnode);

fsingl(stdout);

}



Programming

Distributed Irregular Mesh Environment 32 of 56

The macrosFORALLELMTS ... NEXTELMT  andFORALLNODES ... NEXTNODE are
loops over all the elements or nodes owned by a processor, if there are any. The printing of the
result is done in multiple mode because each processor in general has a different number of
elements and nodes. The external variable procnum contains the processor number. Running
this program sequentially simply prints out the result for one processor, whose processor
number is zero. This is because a sequential machine is just a parallel machine with one
processor. Note the return to the default single mode after using multiple mode.

The user may wish to access the coordinates of a node, usingnode->x  andnode->y  for the
horizontal and vertical coordinates. Other useful parts of the node structure are a pointer to its
boundary structure,node->b , which is NULL if the node is not on a boundary; and the
pointer to its user structure, which isnode->user .

The boundary structure has a pointer to the next node in each direction. Moving along the
boundary with the mesh on the right leads to the nodenode->b->clock , and the opposite
direction leads to the node node->b->antik . The boundary structure also has an integer
node->b->type , being one of the macrosPOINT, CURVE or INSIDE , if the node is
associated with a Point, Curve or neither respectively. If the node is on a Curve, then the
double node->b->s  gives the approximate arc length along the curve to this node. Also,
of course, there is a pointer to the boundary user structurenode->b->user .

The element has a user structureelmt->user , and three pointers to its neighboring nodes,
referred to aselmt->neigh[i]  where i  is 0, 1 or 2,which are in anticlockwise order
around the element. A useful construction iselmt->neigh[(i+1)%3] , which is the next
node anticlockwise afterelmt->neigh[i] .

10.3 Parallelism

Suppose we wish each node to have in its user structure the sum of the areas of the elements
around it. We could declare the user structures as

struct user_elmt {

double earea;

};

struct user_node {

double narea;

};

whereearea  is the area of the element, andnarea  is the node area - the desired sum of areas
of neighboring elements. We can easily set up the element areas with one of the DIME
functions (area ):

double area();

FORALLELMTS(elmt)

elmt->user->earea = area(elmt);

NEXTELMT(area)



Programming

Distributed Irregular Mesh Environment 33 of 56

which illustrates how to access the user data. We may compute the node area in two ways,
either by having each element give its area to its three neighboring nodes, or by having each
node get the area from its neighboring elements:

/* Nodal Area: Method 1 */

FORALLNODES(node)

node->user->narea = 0;

NEXTNODE(node)

FORALLELMTS(elmt)

for(i=0; i<3; i++){

node = elmt->neigh[i];

node->user->narea += elmt->user->earea;

}

NEXTELMT(elmt)

Which demonstrates how an element can access the data of its neighboring nodes. The second
method is:

/* Nodal area: Method 2 */

FORALLNODES(node)

node->user->narea = 0;

FORALLNEIGH(node, elmt)

node->user->narea += elmt->user->earea;

NEXTNEIGH(node, elmt)

NEXTNODE(node)

Which demonstrates the macroFORALLNEIGH ... NEXTNEIGH  for looping over all the
elements surrounding a given node. These two code segments may be visualized as follows:

1: Element increments nodes 2: Node gathers from elements



Programming

Distributed Irregular Mesh Environment 34 of 56

With either method, each node now has the sum of areas of its surrounding elements. If the
mesh is distributed, some nodes will only have a partial sum, and we need to combine these
partial sums:

For each physical node, the specified part of the user structure is summed over the logical
nodes which constitute that physical node. For nodes which are not split, of course nothing
happens. After the return fromNODE_COMBINE, each logical node has the same value as its
aliases, being the desired sum of areas:

The combining functionfsum  is for summing real numbers (doubles); there are other
combining functions provided - see the manual pages for details. The combining function must
be a commutative and associative binary operation.

10.4 Global Data

The macroNODE_COMBINE allows each node of the mesh to access the data in its immediate
neighborhood. Often we need more global information. Suppose we would like to know the
total number of elements in the mesh, rather than the totals from each processor, as in Section
10.2. We calculate the value for each processor as before with a loop over all elements, but add
the call:

which on return has replaced the quantity under the pointer (nelmt ) with the sum of that
quantity over all processors. The result may now be printed:

printf(“Total elements %d\n”, nelmt);

without recourse to multiple mode.

10.5 Boundaries

Nodes which lie either on a physical boundary of the domain or on a boundary between
processor domains have a non-NULL value for their boundary structure,node->b . If this is

NODE_COMBINE(narea, fsum, 1);

Logical nodes have 2, 1, 4, 2Before NODE_COMBINE

After NODE_COMBINE Logical nodes have 9, 9, 9, 9

GLOBAL_COMBINE(nelmt, fsum, 1);



Programming

Distributed Irregular Mesh Environment 35 of 56

true, there will be a boundary user structure associated with that node, and those data may be
associated with either the node itself, or the edge connecting the node to the next one
clockwise. We need to find out whether the node is on the physical boundary or just a
processor boundary, and similarly for the edge. There are two macros for this.

Figure 13 shows part of the logical structure of a mesh near the boundary with three processors
shown by different shading styles:In the top panel is shown the use of the macro
B_NODE(node) , which is true (1) if and only if the node lies on a physical boundary rather
than merely a processor boundary. The macroB_EDGE(node)  is similar but subtly different.
It returns true only if the edge clockwise of the node lies on the physical boundary.

We would also like to know whether the boundary node lies at a Point or a Curve of the
physical boundary and which one; and if so which Curve the clockwise edge might lie on.

The macroB_POINT(node)  returns a pointer to the Point of the boundary specification with
which the node is associated, or NULL if the node is not associated with a Point.

The macroB_CURVE(node)  returns a pointer to the Curve of the boundary specification
with which the node is associated, or NULL if the node is not associated with a Curve.

B_EDGE(node) is true

B_NODE(node) is true

Figure  13 B_NODE and B_EDGE macros



Programming

Distributed Irregular Mesh Environment 36 of 56

The macro B_EDGE_CURVE(node)  returns a pointer to the Curve of the boundary
specification with which the edge clockwise from the node is associated, or NULL if that edge
is not identified with a Curve.

Analogous toNODE_COMBINE described in Section 10.3, there is aBDY_COMBINE, which
can be called with the name of a member of the user boundary structure. This is then combined
across the members of all their physical nodes which lie on the physical boundary.

10.6 Callback Functions

There are a small number ofcallback functions which the user may wish to set. These are used
by DIME at various times without being explicitly selected from the menu. Examples of their
use may be found in the manual pages.

■ distort  is a mapping from the coordinatesnode->x  andnode->y  of a
node to its position on the screen. This is the identity mapping by default.

■ sqdist  defines the metric of the two-dimensional manifold being meshed. It
returns the square of the distance between two nodes, and is used by the
refinement procedure to decide the longest side of a triangle.

■ refine_func  is called whenever an element is refined by placing a new node
at the midpoint of its longest side. The user may fill the user structure of the new
node with data interpolated from the neighborhood.

■ swops_func  is called when topological relaxation occurs. The user may fill
the user structures of the two new elements with data interpolated from the old
elements and surrounding nodes.

■ user_read  is called when a node, boundary or element structure is read from
a file. The user may read data saved from a previous run or added with a text
editor.

■ user_write  is called when a node, boundary or element structure is written
to a file. The user may write data to be read by a future run of the program. This
is useful as a backup facility during long batch runs.

10.7 Graphics

DIME provides graphics functions for drawing a mesh, drawing a logical mesh, or for
contouring a function defined by linear finite elements at the nodes. The user may also use any
functions from the Plotix parallel graphics library9 which comes with Express.

10.7.1 Contouring

The contourer is sent a function pointer, and the function should take a node pointer as input
and return a double. This value is the quantity that is contoured, either with lines or with color-
coded shading, with explicit minimum and maximum contour values or by finding the actual
minimum and maximum of the function. For more details see the manual pages.



Programming

Distributed Irregular Mesh Environment 37 of 56

10.7.2 PostScript hard copy

There is also a facility for making PostScript10 hard copy. If the “Postscript” item is chosen
from the DIME menu, you are prompted for a file name. The suffix .ps  is added and the file
opened if possible. From now on all the graphics which goes to the graphics part of the screen
is also put into this file. A second selection of the “Postscript” item switches this off and closes
the file. This file may then be printed on any PostScript device. At the top of the PostScript file
are defined two variables “frame” and “color”:

/frame false def

/color true def

which control whether the PostScript is to be used as input to a Framemaker document or not,
and whether the printing device can print in color. Either of these may be changed with a text
editor before printing.

10.7.3 Zooming

The submenu ZOOM contains the four choices. “Extents” zooms to the smallest rectangle
enclosing the whole mesh, and “Window” prompts for the corners of a rectangle and zooms so
that the rectangle fills the screen. The option “Half” doubles the scale so that everything is half
the size it was, and “Explicit” prompts for numerical values for the window size.

10.7.4 Drawing the Mesh

The mesh may be drawn by selecting “Drawmesh” from the DIME menu or by calling the
functiondrawmesh() , and the logical mesh (similar to Figure 11) by selecting
“Logicalmesh” or by calling the functionlogicalmesh() . For more details see the manual
pages.

10.7.5 Flushing Graphics

If graphics is produced using the Plotix functions such asmove, cont , initpanel ,
panelpoint , endpanel , color , etc, or the DIME extensionsdraw , draw_elmt ,
arrow , then the graphics stream must be loosely synchronously flushed with the Plotix call
usendplot() . See the Plotix documentation and Sections 4.2 and 4.3 for more details.



References

Distributed Irregular Mesh Environment 38 of 56

11.0 References

1. R. D. Williams, DIME: A programming Environment for unstructured triangular meshes on a
distributed memory parallel processor, Proc. 3rd Hypercube Conference, Pasadena, CA, 1988,
ed. G. C. Fox.

2. A. Bowyer,Computing Dirichlet Tesselations, Comp. J.24 (1981) 162.

3. R. D. Williams,Supersonic Flow in Parallel with an Unstructured Mesh, Concurrency, Prac-
tice and Experience,1 (1989) 51.

4. R. D. Williams,Performance of a Distributed Unstructured-Mesh Code for Transonic Flow,
Caltech Concurrent Computation Report C3P-856 (January 1990).

5. R. D. Williams,Distributed Irregular Finite Elements, J. Num. Meth. Fluid Mech. (to be pub-
lished), also Caltech Concurrent Computation Project Report C3P 715.

6. C. F. Baillie, D. A. Johnston and R. D. Williams,Computational Aspects of Simulating Dy-
namically Triangulated Random Surfaces, Comput. Phys. Commun., (to be published).

7. R. D. Williams, B. Rasnow and C. Assad,Hypercube Simulation of Electric Fish Potentials,
Proc. 5th Distrib. Mem. Computing Conf., Charleston SC April 1990.

8. R. D. Williams, Free-Lagramge hydrodynamics with a distributed-memory parallel processor,
Parallel Computing 7 (1988) 439.

9. Express: An Operating System for Parallel Computers;
Cubix: Programming Parallel Computers without Programming Hosts;
Plotix: A Graphical System for Parallel Computers;
ParaSoft Corp., 2500 E. Foothill, Pasadena, CA 91107, (818) 792 9941.

10. Adobe Systems Inc.,PostScript Tuorial and Cookbook; PostScript Language Reference Manu-
al; Addison-Wesley, Reading, MA, 1987.

11. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon and D. W. Walker,Solving
Problems on Concurrent Processors, Prentice-Hall, Englewood Cliffs NJ 1988.

12. W. J. Schroeder and M. S. Shephard,Geometry-Based Fully Automatic Mesh Generation and
the Delaunay Triangulation, Int. J. Num. Meth. Engng.26 (1988) 2503.

13. E. W. Felten and R. D. Williams,Distributed Processing of an Irregular Tetrahedral Mesh,
Caltech Concurrent Computation Project C3P-793 (May 1989).

14. M-C. Rivara,Design and Data Structure of Fully Adaptive Multigrid, Finite-Element Software,
ACM Trans. in Math. Software,10 (1984) 242.

15. D. M. Young,Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.



DIME Menu Tree

Distributed Irregular Mesh Environment 39 of 56

DIME Menu Tree

USER As defined by User(§ 10.1)

DIME See Below

SCRIPT See Below

ZOOM See Below

Terse Toggles verbose mode for graphics

Pause Waits for a newline from keyboard: useful for pausing a script file

Erase Erases the screen leaving the menu only

Quit Quit

Readmesh Asks for boundary and mesh file and reads the mesh (§ 3.1, 4.4)

Writemesh Asks for mesh file name and writes the mesh (§ 4.4)

Drawmesh Draws the mesh

Logicalmesh Draws the logical structure of the mesh (§ 8.1, 8.2)

Postscript Toggles PostScript recording of graphics (§10.7.2)

Rectrefine Refines a chosen rectangle so all edges shorter than chosen resolution (§ 3.4)

Relax Moves each node to the average position of its neighbors (§ 9.2)

Toporelax Topological relaxation (§ 9.3)

Balance Load balancing by orthogonal recursive bisection (Manual Pages)

Memory Summary of memory usage

Use_script Requests and uses a script file (§3.8)

Make_script Requests a file name and starts recording menu choices (§ 3.8)

End_script Stops recording menu choices

Extents Zooms to the smallest rectangle enclosing the mesh (§10.7.3)

Window Requests rectangle and zooms to chosen window (§10.7.3)

Half Halves the scale (§10.7.3)

Explicit Requests position of window origin and width of window (§10.7.3)



Meshtool and Curvetool Menu Tree

Distributed Irregular Mesh Environment 40 of 56

Meshtool and Curvetool Menu Tree

Meshtool (Section 7)
ZOOM As above

SCRIPT As above

Readbdy Requests and reads a boundary definition file (§5.1, §7.2)

Redraw Erases and redraws current boundary and triangulation

Addnodes Treats subsequent mouse clicks as nodes to be added to the triangulation (§7.2)

Edgenodes Treats subsequent mouse clicks as nodes to be added at nearest boundary point (§7.2)

Triangulate Adds enough nodes to make triangulation topologically equivalent to boundary (§7.1)

Writemesh Requests point in region and writes mesh file

Erase Erases the screen leaving the menu

Quit Quit

Curvetool (Section 6)
ZOOM As above

SCRIPT As above

EXTRAS See below

Redraw Draws current curves with decoration

Addpoint Next mouse click is position of new Point

Connect Select two Points to be connected

Adjust Allows Points, knots and SCM’s to be moved

Split Splits a cubic spline into two

Straighten Changes a cubic spline to a straight line

Drawcurves Draws current curves without decoration

Postscript Prompts for file and makes PostScript file of current curves

Write_bdy Prompts for file and makes.bdy  file for meshtool

Erase Erases the screen leaving the menu

Quit Quit

Grid Toggles grid on and off. If on, prompts for grid spacing

Snap Toggles snap on and off. If on, prompts for snap spacing

Name_point Select a point and name it

Name_Curve Select a Curve and name it



DIME structures

Distributed Irregular Mesh Environment 41 of 56

DIME structures

The following is a simplified list of the DIME structures with a tiny explanation for each:

typedef struct node { Node Structure
double x, y; Position of node
struct bdy *b; B oundary structure or NULL
struct nodeneigh *n; Pointer to list of neighbors
struct user_node *user; User Data

} _NODE, *NODEPTR;

typedef struct bdy { Boundary Structure
struct node *clock; Next node clockwise
struct node *antik; Next node anticlockwise
int type; POINT, CURVE or neither
union {

struct curve *curve; Pointer to Curve
struct point *point; Pointer to Point

} bdy;
double s; Arc length if node is a Curve
struct user_bdy *user; User Data

} _BDY, *BDYPTR;

typedef struct nodeneigh { List of elements neighboring a node
struct elmt *elmt; Pointer to this elmt
struct nodeneigh *next; Next anticlockwise in neighbor list

} NODENEIGH, *NODENEIGHPTR;

typedef struct elmt { Element Structure
struct node *neigh[3]; 3 neighbor nodes of this elmt
struct user_elmt *user; User Data

} _ELMT, *ELMTPTR;

typedef struct point { Point Structure
char name[20]; Name of the Point
int ptnum; Number of the Point
double x, y; Position of the Point

} _POINT, *POINTPTR;

typedef struct curve { Curve Structure
char name[20]; Name of the Curve
int curvenum; Number of the Curve
double length; Length of the Curve
struct point *first, *last; Points at the start and end of the Curve
struct segment *start; List of Curve segments

} _CURVE, *CURVEPTR;



balance, set_balance, balance_orb

Distributed Irregular Mesh Environment 42 of 56

NAME

balance, set_balance, balance_orb

 Load balancing a mesh

SYNOPSIS
void balance()

void set_balance(elmt, new_processor)

ELMTPTR elmt;

int new_processor;

void balance_orb()

FUNCTION TYPE
balance, balance_orb - Loosely Synchronous

set_balance - Local

DESCRIPTION

balance  causes the mesh to be redistributed among the processors of the machine. Before
callingbalance , which must be loosely synchronous, the functionset_balance  should
be called for each element. For example:

FORALLELMTS(elmt)

set_balance(elmt, 6);

NEXTELMT(elmt)

balance();

would cause the entire mesh to be put into processor 6, leaving all the other processors idle.
This is not a good load-balancing strategy.

/over



balance, set_balance, balance_orb

Distributed Irregular Mesh Environment 43 of 56

balance_orb()  causes the mesh to be load-balanced by orthogonal recursive bisection.
The mesh is split according to the position of the centers of the elements. First a line of
constant x coordinate is found which splits the mesh into equal numbers of elements, then for
each half a line of constant y is found which splits the half into quarters, and so on alternating
x and y:

= center of element

2 processors

16 processors8 processors

4 processors



refine, refine_fraction, set_refine, refine_func

Distributed Irregular Mesh Environment 44 of 56

NAME

refine, refine_fraction, set_refine, refine_func

 Refine a selection of mesh elements

SYNOPSIS
void refine()

void refine_fraction(func, fraction)

double (*func)(), fraction;

void set_refine(elmt, to_be_refined)

ELMTPTR elmt;

int to_be_refined;

void refine_func(elmt, node, node1, node2, new, elmt1,
elmt2)

ELMTPTR elmt, elmt1, elmt2;

NODEPTR node, node1, node2, new;

FUNCTION TYPE
refine, refine_fraction - Loosely Synchronous

set_refine - Local

refine_func - Callback

DESCRIPTION

Causes the mesh to be refined by the algorithm of Rivara. Before calling refine, which must be
loosely synchronous, the functionset_refine  should be called for each element. For
example:

#include “dime.h”

FORALLELMTS(elmt)

set_refine(elmt, TRUE);

NEXTELMT(elmt)

refine();

would cause all the elements to be refined.

refine_fraction()  causes a fractionfraction , between 0 and 1, of the elements of
the mesh to be refined. The functionfunc  should be declared

double func(elmt)

ELMTPTR elmt;



refine, refine_fraction, set_refine, refine_func

Distributed Irregular Mesh Environment 45 of 56

This function is called for each element of the mesh, and the value returned should be a
measure of how worthy is that element for refinement. A value is found by binary search such
that the given fraction of the elements are to be refined, then the refinement occurs.

Interpolation of the user’s data may occur if the callback functionrefine_func  has been set
in theuser_main  function of the user code. The user’s callback function is called after the
new structures have been attached to the existing mesh and the old structures removed. The old
structures are deleted immediately after return from the user’s callback function. An example
of the use of this callback is:

#include “dime.h”

user_main()

{

void my_refine_func();

refine_func = my_refine_func;

...

}

void

my_refine_func(elmt, node, node1, node2, new, elmt1, elmt2)

ELMTPTR elmt, elmt1, elmt2;

NODEPTR node, node1, node2, new;

{

new->user->datum =

0.5*(node1->user->datum + node2->user->datum);

}

which would cause the user’s valuedatum  to be linearly interpolated from the nodes around
it. The meaning of the arguments is shown below, on the left being the old view and on the
right the new view. The elementelmt will be deleted when the function returns.

node

node1node2 new

elmt1elmt2
elmt

node2 node1

node



swops, swops_func

Distributed Irregular Mesh Environment 46 of 56

NAME

swops, swops_func

Topological Relaxation

SYNOPSIS
user_main(...)

{

void my_swops_func();

swops_func = my_swops_func;

}

swops()

void my_swops_func(A, B, C, D, ABC, ACD, ABD, BCD)

NODEPTR A, B, C, D;

ELMTPTR ABC, ACD, ABD, BCD;

FUNCTION TYPE
swops - Loosely Synchronous
swops_func - Callback Function

DESCRIPTION

The function swops causes topological relaxation of the mesh, as explained in Section 9.3.

If swops_func  is set, it is called each time an edge is swopped to allow the user to reset data
in the user structures accordingly. Data from the old elements ABC and ACD should be
interpolated to the new elements ABD and BCD, perhaps using user data from the nodes A, B,
C and D. See the manual page forrefine_func  for setting up this callback.

A

B

C

D

A

B

C

D

ABC

ACD

ABD BCD



distort, sqdist

Distributed Irregular Mesh Environment 47 of 56

NAME

distort, sqdist

Non-Euclidean metric

SYNOPSIS
user_main(...)

{

void my_distort();

double my_sqdist();

distort = my_distort;

sqdist = my_sqdist;

}

void my_distort(node, ax, ay)

NODEPTR node;

double *ax, *ay;

double my_sqdist(node1, node2)

NODEPTR node1, node2;

FUNCTION TYPE
Callback Functions

DESCRIPTION

If distort  has been set, it is called whenever the coordinates of a node are required, for
example in drawing the mesh, or deciding if a node is inside a user-selected window.
distort  takes a pointer to a node and two pointers todouble , which should be filled with
the screen-coordinates of the node.

If sqdist has been set, it replaces the usual Eulidean distance measure (x0-x1)2 + (y0-y1)2 with
a user-supplied metric. The function is used during refinement to decide which is the longest
side of a triangle.



menu_add_function, menu_add_menu

Distributed Irregular Mesh Environment 48 of 56

NAME

menu_add_function, menu_add_menu

add functions and submenus to menu tree

SYNOPSIS
void menu_add_function(menu, label, function)

MNUPTR menu;

char *label;

int (*function)();

MNUPTR menu_add_menu(menu, label)

MNUPTR menu;

char *label;

FUNCTION TYPE

 Loosely Synchronous

DESCRIPTION

In the functionuser_main , the user has the opportunity to add functions and submenus to
the available menu. This is the only way that the user-provided functions can be executed by
DIME. For example:

user_main(user_menu, argc, argv)

MNUPTR user_menu;

int argc;

char **argv;

{

int doit(), freddy();

MNUPTR submenu;

menu_add_function(user_menu, “Doit”, doit);

submenu = menu_add_menu(user_menu, “SUBMENU”);

menu_add_function(submenu, “Freddy”, freddy);

would make the user menu have two items,Doit  andSUBMENU. If Doit  is clicked or in a
script file, then the user-provided functiondoit  is executed, and ifSUBMENU is clicked, the
itemFreddy  appears, which if chosen would execute the user-provided functionfreddy .
Each user-provided function is called with no arguments.



draw, draw_elmt, arrow, disp_erase, color

Distributed Irregular Mesh Environment 49 of 56

NAME

draw, draw_elmt, arrow, disp_erase, color

Graphics functions

SYNOPSIS
int draw(node1, node2)

NODEPTR node1, node2;

int draw_elmt(elmt, shade)

ELMTPTR elmt

int shade;

int arrow(x, y, dx, dy)

double x, y, dx, dy;

int disp_erase()

int color(shade)

int shade;

FUNCTION TYPE

Local

DESCRIPTION

draw  draws a line from node1 to node2 in the current line-drawing color.

draw_elmt  draws a triangle a little smaller than an element in colorshade .

arrow  draws an arrow from (x, y) to (x+dx, y+dy) in the current line drawing color.

disp_erase  erases the graphics part of the screen and redraws the current menu.

color  changes the current line drawing color to the colorshade . See$DIME/src/
include/color.h  for an explanation of the color map. See the Plotix documentation for
an explanation of color in general.

When using these and the Plotix functions in parallel, the graphics must be loosely
synchronously flushed withusendplot() . See Section 10.7.5.



contor, slow_contor, elmt_contor

Distributed Irregular Mesh Environment 50 of 56

NAME

contor, slow_contor, elmt_contor

Contouring functions

SYNOPSIS
contor(nfunc, nlevel, panels, min, max)

double (*nfunc)(), min, max;

int nlevel, panels;

slow_contor(nfunc, nlevel, panels, min, max)

double (*nfunc)(), min, max;

int nlevel, panels;

double nfunc(node)

NODEPTR node;

elmt_contor(efunc, nlevel, min, max)

double (*efunc)(), min, max;

int nlevel;

double efunc(elmt)

ELMTPTR elmt;

FUNCTION TYPE

Loosely Synchronous

DESCRIPTION

contor  andslow_contour  draw a contour plot of a function whose values are defined at
the nodes from the functionnfunc  and is linearly interploated elsewhere in the mesh domain.

elmt_contor  fills the elements with color based on the value of the functionefunc .

In each case the number of contour levels isnlevel , ranging frommin  to max. If min  ³
max, then the actual minimum and maximum of the functionsnfunc  or efunc  is found and
substituted. Forcontor  andslow_contor , the plot is contour lines ifpanels  is 0
(FALSE)  and is a false-color shaded plot if panels is 1 (TRUE) .

contor  attempts to minimise communication from the parallel machine to the graphics server
by using large filled polygons, whileslow_contor  uses the more robust but slower method
of contouring each triangle separately.



fmax, fmin, fsum, imax, imin, isum

Distributed Irregular Mesh Environment 51 of 56

NAME

fmax, fmin, fsum, imax, imin, isum

ready made combining functions

SYNOPSIS
double global;

GLOBAL_COMBINE(global, fmax, n);

struct user_node {

double user_struct_member;

...;

}

NODE_COMBINE(user_struct_member, fmax, n);

FUNCTION TYPE

Combining Functions

DESCRIPTION

Each of these functions may be used in the macro GLOBAL_COMBINE to get global data.
For example:

do {

...

error = 0;

FORALLELMTS(elmt)

if(elmt->user->error > error)

error = elmt->user->error;

NEXTELMT(elmt)

combine(&error, fmax, sizeof(error), 1);

} while(error > tolerance);

This is a typical situation where an iterative process continues until some global maximum is
sufficiently small. In the loop over elements, we calculate the maximum value of something in
the element user-structure callederror . The loop over elements calculates the maximum
within each processor, which is not of course the same as the maximum over all processors.
Thecombine  call replaces the value(s) under the pointer by the maximum over all
processors.

WARNING: If a decision is to be made about the future course of the program based on the
magnitude of something likeerror , and it has not beencombine ’ed, then deadlock may
occur.



fmax, fmin, fsum, imax, imin, isum

Distributed Irregular Mesh Environment 52 of 56

When data is gathered into a node from its neighboring elements, there should be a
NODE_COMBINE to spread the results over the logical members of a physical node. See
Sections 10.3 and 10.4 for more details.

The other combining functions work in much the same way, being for maximum, minimum
and sum of doubles and integers respectively.

A new combining function may be created as in the following example, in which we would
like the minimum absolute value of a quantity:

fmodmin(a1, a2, size)
double *a1, *a2;
int size
{

if(fabs(*a1) > fabs(*a2))
*a1 = fabs(*a2);

else
*a1 = fabs(*a1);

return 0;
}



get_double, get_gin, get_int, get_string

Distributed Irregular Mesh Environment 53 of 56

NAME

get_double, get_gin, get_int, get_string

input from interactive user or script file

SYNOPSIS
void get_double(d)

double *d;

void get_gin(x, y)

double *x, *y;

void get_int(i)

int *i;

void get_string(s)

char *s;

FUNCTION TYPE

Loosely Synchronous

DESCRIPTION

These functions get input either from an interactive user of a DIME program, or from a script
file. If the program is being run in interactive mode, with a script file being made, then
whatever response comes from the user is also recorded in the script file. If the program is
being run from a script file, the input is read from that script file. In interactive mode,
get_double , get_int , andget_string  expect the user to type in a double, integer or
string respectively.get_gin  expects the user to provide graphical input, ie to click the mouse
at some point on the screen. For example:

double x, y;

printf(“Click the next position please\n”);

get_gin(&x, &y);



user_read, user_write

Distributed Irregular Mesh Environment 54 of 56

NAME

user_read, user_write

reading and writing user data to/from mesh files

SYNOPSIS
user_main(...)

{

int my_read(), my_write();

user_read = my_read;

user_write = my_write;

}

my_read(str, type, ptr)

char *str;

int type;

char *ptr;

my_write(str, type, ptr)

char *str;

int type;

char *ptr;

FUNCTION TYPE

Callback functions

DESCRIPTION

These functions may be used to read and write data to and from the mesh file. Ifuser_write
is set inuser_main , it is called when the mesh is written, first at the beginning for the output
for “miscellaneous” data, then for each node, element and boundary that is written to the file.
DIME first writes its own information about the structure, then sends the address of a character
buffer of size 1024 bytes to the function pointeruser_write , together with the integer
type,  specifying what structure is being written, and a pointer to that structure. If
user_write  returns 1 (TRUE), then whatever was written into the buffer is copied into the
mesh file. Ifuser_write  returns 0 (FALSE), then nothing is added to the mesh file.

Similarly when a mesh is being read, ifuser_read  has been set, the user may read in data
from the mesh file to the user structures. In this case the return value is ignored.

Miscellaneous data is written and read in single mode, so all processors get the same data.

There should be no newline characters in the string written.



user_read, user_write

Distributed Irregular Mesh Environment 55 of 56

A mesh written with a user-defined write function may be read by a program without a user-
defined read function: the data is simply ignored.

Here is an example of using these functions to keep some data with the mesh:

#include “dime.h”

char version[100];

struct user_node {...;};

struct user_elmt {...; int oblong; ...;};

struct user_bdy {...; double imgmar; ...;};

user_main(user_menu)

MNUPTR user_menu;

{

int my_read(), my_write();

user_read = my_read;

user_write = my_write;

}

my_read(str, type, ptr)

char *str;

int type;

char *ptr;

{

NODEPTR node;

ELMTPTR elmt;

BDYPTR bdy;

switch(type){

case MISC:

sscanf(str, “%s”, version); break;

case NODE: node = (NODEPTR)ptr;

break;

case ELMT: elmt = (ELMTPTR)ptr;

sscanf(str, “%d”, &elmt->user->oblong); break;

case BDY: bdy = (BDYPTR)bdy;

sscanf(str, “%lf”, &bdy->user->ingmar); break;

}

return 1;

}



user_read, user_write

Distributed Irregular Mesh Environment 56 of 56

my_write(str, type, ptr)

char *str;

int type;

char *ptr;

{

NODEPTR node;

ELMTPTR elmt;

BDYPTR bdy;

switch(type){

case MISC:

sprintf(str, “%s”, version);

return 1;

case NODE: node = (NODEPTR)ptr;

return 0;

case ELMT: elmt = (ELMTPTR)ptr;

sprintf(str, “%d”, elmt->user->oblong);

return 1;

case BDY: bdy = (BDYPTR)bdy;

sprintf(str, “%lf”, bdy->user->ingmar);

return 1;

}

}


