
ESTIMATING THE ERROR OF NUMERICAL SOLUTIONS OF

SYSTEMS OF NONLINEAR REACTION-DIFFUSION EQUATIONS

DONALD J. ESTEP �, MATS G. LARSON y , AND ROY D. WILLIAMS z
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1. Introduction.

The ever increasing activity in the areas of mathematics and science concerned
with reaction-di�usion equations marks both their important role in modelling phys-
ical phenomena in such diverse �elds as biology, chemistry, metallurgy, and combus-
tion, and the beauty and complexity found in their solutions. Numerical analysis of
reaction-di�usion equations has become a central tool in their study because of the
many barriers that exist for mathematical analysis. It is exactly these situations,
when we know little about the true solution, that are particularly needful of accu-
racy in numerical results. Yet, these same analytic di�culties also give rise to nearly
insurmountable barriers to accurate analytic estimation of the error of numerical so-
lutions. In this paper, we investigate a di�erent approach to this problem based on
the computational estimation of the error of numerical solutions.

Many fundamental models in science take the form

@u

@t
�r � ��(u; x; t)ru�+X

j

�j(u; x; t)
@u

@xj
= f(u; x; t) (1.1)

for a vector unknown u 2 Rd, where � is a diagonal matrix with smooth nonnegative
entries, �j are diagonal matrices with smooth entries that are dominated by the
coe�cients of �, and f = (fi) is a smooth vector-valued function. Some well-known
examples are:

Example 1: the bistable equation. Also known as the Chafee-Infante problem, the
equation has the form (1.1) with d = 1, � > 0 constant, � � 0, and f(u) = u� u3. In
one dimension, the bistable equation has been used to model the motion of domain
walls in ferromagnetic materials.

Example 2: equations for two species. This is a model for the interaction of two species
distributed continuously throughout the region 
. It has the form (1.1) with d = 2, �
constant, � � 0, f1 = u1M (u1; u2), and f2 = u2N (u1; u2). To model a predator and
prey, we assume that Mu2 < 0 and Nu1 > 0. To model two competing species, we
assume that Mu2 < 0 and Nu1 < 0. Finally to model symbiosis, we assume Mu2 > 0
and Nu1 > 0.

Example 3: Hodgkin-Huxley equations. These equations model the signal transmission
across axons. The system takes the form of (1.1) with d = 4, � constant, � � 0, and

f1 = �1u
3
2u3(�1 � u1) + �2u

4
4(�2 � u1) + �3(�3 � u1); �1 > �2 > 0 > �3

fi = gi(u1)(hi(u1) � ui); gi > 0; 0 < hi < 1; 2 � i � 4:

u2, u3, and u4 represent chemical concentrations and are nonnegative, while u1 rep-
resents electric potential.

Example 4: Fitz-Hugh-Nagumo equations. These equations are a simpli�ed model of
the Hodgkin-Huxley equations. They have the form (1.1) with d = 2, � constant,
� � 0, and

f1 = �u1(u1 � �1)(u1 � 1)� u2; 0 < �1 < 1=2;

f2 = �2u1 � �3u2; �2; �3 > 0:

Example 5: superconductivity of liquids. These equations are used in the description
of superconductivity in liquids. They have the form (1.1) with d = 2, � constant,
� � 0, and f(u) = (1� juj2)u.
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Example 6: Field-Noyes equations. These are used to model the famous Belousov-
Zhabotinsky reaction in chemical kinetics. They have the form (1.1) with d = 3, �
constant, � � 0, and

f1 = �1(u2 � u1u2 + u1 � �2u
2
1);

f2 = ��11 (�3u3 � u2 � u1u2);

f3 = �4(u1 � u3);

�1; �3; �4 > 0; �2 � 10�8:

The variables represent chemical concentrations and remain nonnegative.

Example 7: model equations for �ame propagation. These equations are used in the
theory of combustion. They have the form (1.1) with d = 2, � constant, � � 0, and

f1 = �u1e��1=u2;
f2 = �2u1e

��1=u2 :

Example 8: model equations for morphogenesis. These equations are used to model
morphogenesis of patterns. They have the form (1.1) with d = 2, � constant, � � 0,
and

f1 = �u1u22 + �1(1� u1);

f2 = u1u
2
2 � (�1 + �2)u2:

Example 9: model for the spread of rabies in foxes. This equation is a model for the
spread of rabies in Europe in the fox population. It has the form (1.1) with d = 1, �
constant, � � 0, and

f1 = �1(1� u1 � u2 � u3)u1 � u3u1;

f2 = u3u1 � (�2 + �3 + �1u1 + �1u2 + �1u3)u2;

f3 = �2u2 � (�4 + �1u1 + �1u2 + �1u3)u3;

where �i > 0 for all i and 0 < �4 <
�
1 + (�3 + �1)=�2

��1 � �1.

Example 1, which is used as a prototypical example in this paper, was investigated
analytically by Chafee [10], Bronsard and Kohn [6], [7], Carr and Pego [9], and Fusco
and Hale [41], and numerically by Estep [27]. Descriptions of examples 2�7 can be
found conveniently in Smoller [62]. Example 8 is analyzed in Pearson [57]. Example
9 is discussed in Murray [53]. See Fife [37] and Murray [53] for more information and
references on the applications of reaction-di�usion equations. It is impossible to give
a complete review of the literature on reaction-di�usion equations here. We only note
that in addition to the references above, Aronson and Weinberger [3], Brown, Donne,
and Gardner [8], Cohen [14], Cooley and Dodge [15], Hastings [42], Hodgkin and
Huxley [44], Matano [50], Mimura, Nishiura, and Yamaguti [51], Rauch and Smoller
[59], and Troy [64] contain material speci�cally considered in the preparation of this
paper.

The complexity in the solutions arises primarily from the competition between
reaction and di�usion and the nonlinear nature of the equations that allows localized
behavior in classes of solutions. In particular, it is characteristic for solutions to



4 D. ESTEP, M. LARSON, AND R. WILLIAMS

encompass behavior on several di�erent scales simultaneously: long time phenomena
such as metastability together with rapid transients; localized spatial behavior such
as moving layers and blow-up together with global propagation of perturbations and
pattern formation. It is also typical for di�erent classes of solutions to exhibit di�erent
types of behavior to di�erent extents, making it di�cult to perform a meaningful
general analysis. Adding to the di�culty is the fact that in many problems, we
require information about solutions over moderate to long time intervals.

All of these points cause di�culties for the numerical analysis of reaction-di�usion
equations. The upshot is that it is generally easy to produce completely inaccurate
numerical solutions and moreover typical for initially accurate numerical solutions to
become inaccurate at some point. It is therefore scienti�cally important to obtain a
reasonably accurate and reliable estimate of the error of a numerical computation.

We explain these issues further using the bistable problem8>>><
>>>:

@u

@t
� �

@2u

@x2
= u� u3; 0 < x < 1; 0 < t;

@u

@x
(0; t) =

@u

@x
(1; t) = 0; 0 < t;

u(x; 0) = u0(x); 0 < x < 1:

(1.2)

as an example. The dynamical properties of solutions of (1.2) have generated con-
siderable interest in part because it is one of the simplest problems that produce
evolution to equilibrium in the presence of competing stable steady states. The long
time behavior of the solutions is now well understood, see Bronsard and Kohn [6],
Carr and Pego [9] and Fusco and Hale [41]. When � is su�ciently small, the only
stable equilibrium solutions are u � 1 and u � �1 and all solutions, except unsta-
ble equilibrium solutions, converge to one of these two steady-states. However, this
convergence may be extremely slow because solutions can exhibit dynamic metasta-
bility. Generic initial data forms a pattern of transition layers between the values �1
and 1 during an initial transient, after which the layers coalesce by moving more or
less in a horizontal direction. The time scale for substantial motion of the layers is
exp(Cd=

p
�) where C is a constant and d is the distance between neighboring layers.

When two layers become su�ciently close, a rapid transient occurs during which the
layers collapse together. The solution then forms a new, simpler metastable pattern
and the process begins anew.

We illustrate with a computation made with � = :0009 and

u0(x) =

8>>><
>>>:
tanh((:2� x)=(2

p
�)); 0 � x < :28;

tanh((x� :36)=(2
p
�)); :28 � x < :4865;

tanh((:613� x)=(2
p
�)); :4865 � x < :7065;

tanh((x� :8)=(2
p
�)); :7065 � x � 1;

which produces a function that is very close to a metastable state. We display the
evolution of the corresponding numerical solution in Fig. 1.1. The �well� on the left
is slightly thinner and collapses �rst. We estimate the error of this computation and
subsequent computations in this section to be less than 10% and explain the reason
later on.

Numerical evidence was important in the initial stages of the analysis of the
bistable problem. The initial transient and development of the layers, the shape
and motion of the layers, the time scales for evolution all were explored initially using
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Fig. 1.1. Evolution of a metastable solution starting with two �wells� and � = :0009. The left
well is thinner and collapses at t � 41 and the second well collapses at t � 141.

numerical solutions and these results provided the basis for the mathematical analysis.
Experimentation also revealed that care is needed when computing. In particular,
computing without a su�ciently �ne time step or space mesh causes �locking� in
which a metastable pattern actually becomes stable. (See Elliot and Stuart [18] for a
discussion of this phenomena). This does not require gross inaccuracy in the numerical
solution and the only indication that a computation is incorrect is the change in time
scales. Of course to determine this, the correct time scale must be known a priori.

The fact that little is actually known about the error of individual numerical
solutions of reaction-di�usion equations might at �rst seem surprising. After all, there
is a signi�cant amount of literature devoted to a priori error analysis of numerical
methods for such problems. The results generally take the form

ke(t)k � eLtC(u) (hp + kq) (1.3)

where e(t) denotes the error at time t, k k some norm, L = L(�; f) is a positive
constant, h and k are parameters measuring the space and time discretization, i.e.
mesh size and time step, p and q are the respective orders of accuracy, and C(u) is a
function of u and its derivatives of order depending on p and q. On investigation, the
�aws in such an estimate are revealed. For one thing, L is generally quite large. For
example, in the computation shown in Fig. 1.1, L is on the order of 1000. This means
that the estimate (1.3) is meaningful only over a short initial transient in general.
Moreover, the size of C(u) is unknown and very often, we do not even know if u
has su�ciently many derivatives for C(u) to be de�ned. Because of requirements of
compatibility between reaction term, the initial data, and the boundary of the domain
of the problem, there is generally an upper limit to the number of derivatives of a
solution of a reaction-di�usion equation that are de�ned.

The last two factors on the right-hand side of (1.3) arise from standard interpo-
lation error considerations. Similar quantities would appear in an error estimate for
any standard approximation computed by interpolation or projection of the solution,
provided it was known. The �rst factor on the right-hand side of (1.3) is not common
to error bounds on interpolants of known functions. It arises because of the possibility
of accumulation of errors occurring as the di�erential equation is solved in time and is
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therefore a re�ection of the stability properties of the problem. The exponential form
of this factor is generally the result of a Gronwall argument that estimates the e�ect
of the reaction term by taking the worst possible rate of growth of perturbations it
can induce.

Of course if the error bound (1.3) is accurate, i.e. the error on the left-hand side
is more or less the size of the bound on the right-hand side, there is nothing much
for it. We can try to �nd a more accurate way to solve the problem or to use the
numerical solution in some other fashion. But in our experience, rapid exponential
growth of errors is rarely found outside short transition periods and the error bound
(1.3) is generally not accurate past initial transients.

In the bistable problem for example, experimentation shows that the time scale
for the collapse of the wells is virtually the same for any numerical solution computed
with time steps and space meshes that are �ner than some minimum level of dis-
cretization determined primarily by �. The time scales for solutions that start with
perturbed data are also the same provided the initial positions of the transition layers
remain �xed. Furthermore in Estep [27], we prove that approximations of metastable
layers computed using schemes that preserve the energy functional that exists for the
continuous problem move on the same time scale as the true layer provided the space
meshes and time steps are su�ciently �ne depending on �. None of these facts amount
to an analytic estimate that says that the error of numerical solutions remains small
for all time, but they do suggest that the exponential bound in (1.3) is too severe.

Part of the di�culty is caused by the ambition inherent in the goal of a priori
error analysis, which is essentially to estimate the error of any numerical solution on
any interval in the possible range of times without using any particular information
about a solution. This might be a reasonable approach for many linear problems,
for which stability and regularity properties of solutions are often uniform. However,
nonlinear problems characteristically allow localized behavior in classes of solutions.

This is easy to demonstrate with the bistable problem. In Fig. 1.2, we show two
sets of initial data and the corresponding solutions at time t � 3:33. The initial values
are small oscillations around a constant value: one is centered around the unstable
steady-state u � 0 and the other around the stable steady-state u � 1. Though the

Fig. 1.2. Plots of solutions of the bistable equation at t � 3:333 and the corresponding initial
data. The data have the same regularity but the solutions at later times have much di�erent regularity
properties.
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two initial functions have the same regularity, only a short time later, the correspond-
ing solutions have much di�erent regularity properties. This is example of localized
regularity properties of solutions. The ability to distinguish di�erent regularity prop-
erties is necessary to estimate the error of numerical solutions accurately. Fortunately,
di�erences in regularity are often obvious, even to the eye. Unfortunately, stability
properties of solutions are also generally localized and the e�ects of stability can be
di�cult to detect. In Fig. 1.3 (a), we plot the initial data used in Fig. 1.2 centered
around u � 0 together with a slightly perturbed function. In Fig. 1.3 (b), we show the
corresponding solutions at time t � 10:0. We plot the results of a similar computation
using the data in Fig. 1.2 centered around u � 1 in Fig. 1.3 (c) and (d). Solutions

Fig. 1.3. Solutions of the bistable problem. (a) Plots of the initial data and a slight perturbation
and (b) plots of the corresponding solutions at t � 10. (c) Plots of the initial data and a slight
perturbation and (d) plots of the corresponding solutions at t � 3:33.

that begin near the �xed point u � 1 are very stable in the sense that nearby data
all converge rapidly to the same function. But the problem is very sensitive to per-
turbations in data that are near 0 as can clearly be seen. Moreover, note that the
two solutions shown in Fig. 1.3 (b) are quite di�erent in the sense of the subsequent
evolution of metastable states, yet essentially possess the same regularity properties
and on that basis, it would be di�cult to distinguish between them.
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As we show below, numerical errors do accumulate at an exponential rate in the
bistable problem during transient periods like those when the patterns displayed in
Fig.'s 1.2 and 1.3 form, as suggested by (1.3). However, the accumulated numerical
error actually decreases abruptly after the pattern has formed and the slow-motion
regime takes over. Then a new period of accumulation begins.

In other problems, like the Lorenz system discussed below, solutions can undergo
dramatic changes in stability without any changes in regularity properties. Thus, it
appears necessary to take into account both the regularity and the stability properties
of individual numerical solutions in order to obtain an accurate estimate of their error.
Attempting to directly estimate the rate of accumulation of error is a feature of the
approach to error estimation proposed in this paper that is not commonly encountered
in the literature. This aspect is the most problematic part of the proposed theory in
terms of costs and analytical di�culties, but practical experience appears to present
no alternatives.

Because a general a priori analysis must treat the worst possible case in terms of
regularity and stability properties of solutions, it is not surprising that the results tend
to overestimation. The solution that we propose is to compute an a posteriori estimate
of the error of each speci�c numerical solution using information obtained from the
numerical solution itself. In other words, we propose using computational work to
make up for our analytical de�ciencies. Accordingly, the mathematical analysis in this
paper is directed towards justifying the process used to produce the computational
error estimate rather than towards estimating the size of the error itself. There are
a priori ingredients in the theory outlined in this paper since, of course, we cannot
ignore the classic considerations of well-posedness, consistency, and stability. But
because we redirect the analysis away from estimating the size of the error itself, we
can use these ingredients in a di�erent, and in some sense more e�cient, manner. For
example, we employ an a priori error estimate similar in form to (1.3). However, we
only use the estimate over one time step.

In this paper, we are concerned with the �pointwise� approximation of individ-
ual solutions, which is fundamentally important in applications. Of course, there are
di�erent ways to analyze di�erential equations numerically. For example, we might
require the numerical method to accurately approximate some dynamical (long-time)
feature of the continuous problem rather than individual trajectories. Another pos-
sibility is to get information from numerics using a statistical approach: trying to
measure some average quantities from many computations without expecting individ-
ual computations to be accurate over a long time. But in our opinion, any analysis
that uses information computed from individual trajectories requires some notion of
accuracy for the individual trajectories. Simply, we cannot expect to get any useful
information from completely inaccurate, non-physical computations. For example, nu-
merical solutions of the bistable equation that have become �locked� will not give the
correct time scales for substantial motion of layers. One way to view the work in this
paper is as a method for determining the time scale over which accurate trajectories
can be computed.

The main contributions contained in this paper are these. We develop a general
theory of a posteriori computational error estimation for numerical solutions of sys-
tems of nonlinear reaction-di�usion equations that may include coupled ordinary and
partial di�erential equations. The theory is based on computing the residual error
of the approximation and estimating the accumulation of errors. We present a new
approach to analyze a posteriori error estimates for numerical solutions of di�erential
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equations that divulges both the theoretical and practical meaning of the estimates.
The analysis is based on a few reasonable a priori assumptions about the problems
and the numerical methods, and in particular, requires minimal regularity of the so-
lutions. We also discuss some important issues that arise in practice when estimating
the error of numerical solutions. We use the theory to estimate the error of typical
numerical solutions of nine standard reaction-di�usion models and for the �rst time,
make a systematic comparison of the time scale over which accurate numerical solu-
tions can be computed for these problems. Finally, we apply the general theory to
the class of problems that admit invariant regions for the solutions, which includes
seven of the main examples above, and obtain stronger results in the analysis of the
a posteriori error bound.

The work in this paper is part of an on-going collaboration devoted to deriving
a posteriori error estimates for general di�erential equations based on residual errors
and Galerkin orthogonality. The review article Eriksson, Estep, Hansbo, and Johnson
[20] contains a description of the work and an overview of the literature associated
to this project while the text [21] presents the theory for linear ordinary and partial
di�erential equations. This approach was suggested originally for ordinary di�erential
equations by Johnson in [46] and �rst carried out for linear parabolic equations in
Eriksson and Johnson [23]. Estep �rst applied this approach to nonlinear ordinary
di�erential equations in [28].

The general a posteriori analysis of Section 2 is closely related to Eriksson and
Johnson's work on linear and nonlinear parabolic problems in [22]�[26] as well as
the analysis for nonlinear ordinary di�erential equations in Estep [28] and Estep and
French [29]. Eriksson and Johnson have concentrated their analysis mainly on strongly
parabolic problems for which it is possible to derive accurate a priori bounds on the
rate of accumulation of errors. In this paper, we treat systems of coupled parabolic
and ordinary di�erential equations under more general assumptions on the stability
properties of the solutions which allows a greater variety of behavior in solutions than
occurs for strongly parabolic problems. We have to modify the a posteriori analysis
to handle the more general system, especially with regard to the presence of ordinary
di�erential equations, and we have to take a di�erent approach to analyzing the a
posteriori error estimate. We also treat systems that admit invariant rectangles for the
solutions, showing how to preserve this special stability property in the �nite element
discretizations and discuss the consequences for the a posteriori error estimate.

Estep [28] and Estep and French [29] considered initial value problems under gen-
eral assumptions allowing signi�cant growth of errors and systematically developed
the idea of computationally estimating the rate of accumulation of errors. Estep and
Johnson [31] used this approach to analyze the chaotic behavior of the Lorenz and
Du�ng systems. Eriksson and Johnson [25], [26] discussed the rate of accumulation
of errors in nonlinear parabolic equations analytically using the a posteriori estimate.
Estep and Williams [35] discussed the practical issues involved in estimating the error
of numerical solutions of large, sparse problems and computationally estimated the
rate of accumulation of error in the bistable example (1.2). More recently Sandboge
[61] studied the computational estimation of the rate of accumulation of errors in
nonlinear parabolic equations. This paper presents a new approach for interpreting
and analyzing the a posteriori error estimate including a result that shows that under
minimal assumptions the residual error of a numerical solution can always be made
small by re�nement and a more complete analysis of the estimation of rates of ac-
cumulation of errors. This paper also discusses some general issues that arise in the
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implementation of the theory in the numerical solution of parabolic partial di�erential
equations.

Other approaches to a posteriori error estimation of numerical solutions of para-
bolic problems can be found in the work of Adjerid and Flaherty, [1], [2], Bieterman
and Babu�ska [4], [5], Moore [52], and R. Nochetto, M. Paolini, and C. Verdi [54], [55],
[56]. Most of this work is not based on the residual error, but instead depends on a
comparison between approximations of di�erent accuracies to give some estimate of
a �local� error.

Lastly, an important early mathematical paper that discusses the use of adaptive
�nite element methods for parabolic problems is Dupont [17]. The paper by Ho�
[45] discusses the preservation of invariant rectangles for reaction-di�usion equations
under discretization by �nite di�erence methods.

The plan of the paper. In Section 2, we develop a general theory of a posteri-
ori error estimation of numerical solutions of (1.1) in one and two space dimensions.
We carry out the analysis for two �nite element space-time discretizations called the
continuous and discontinuous Galerkin methods. With some straightforward modi-
�cations, the theory applies to other �nite element methods and also to di�erence
schemes that can be written as a Galerkin �nite element method with an appropriate
choice of quadrature to evaluate the integrals in the variational formulation. Many
standard schemes can be written in this way and we consider one example in detail.

The a posteriori theory is based on estimating the error in terms of the residual
error of the numerical solution which, roughly speaking, is the remainder resulting
from substituting the approximate solution into the di�erential equation. The residual
error is related to the error of the approximate solution through a proportionality
factor determined by the stability properties of the problem called a stability factor.
The stability factor is something akin to the condition number of a matrix in the
relationship between the error and residual error of a computed solution of a linear
system of equations. In this case, the stability factor is given by some seminorms on
the solution of a linearized adjoint problem to the original di�erential equation and it
is a measure of the sensitivity of numerical solutions of the problem to computational
errors.

In Section 3, we analyze the quantities in the a posteriori error estimate with the
goal of understanding its implications. In particular, we address two issues: is the
residual error de�ned and what is its size, and is the stability factor de�ned what is its
size? We answer these questions using a a set of a priori assumptions on the continuous
problem and the numerical method that are typical of the kind of results that are the
goal of classical analysis of reaction-di�usion equations. These assumptions hold for
various speci�c examples and we show that they hold for general systems of the form
(1.1) with constant di�usion.

We begin by showing that the residual error on any time step can be made arbi-
trarily small by re�ning the space mesh and time step. We also derive precise estimates
on the rate that the residual error tends to zero as the discretization is re�ned. We
also discuss the size of the stability factor and conditions that guarantee that it can be
approximated computationally. We conclude the section with a stability factor gallery
that displays the sensitivity to growth of discretization error in numerical solutions of
the various examples 1�9 above. We believe that this is the �rst systematic study of
the time scale for accurate numerical solution for these problems.

In Section 4, we discuss issues that arise when the a posteriori error estimate
is incorporated into a code that solves reaction-di�usion equations numerically. The
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dominate theme is the approximation of the stability factor, since this involves the
numerical solution of the linear adjoint problem. We present the results of an exper-
iment that tests the accuracy and reliability of the a posteriori error estimate using
the bistable example (1.2). We also discuss an unresolved issue having to do with
linearization and present some numerical results regarding this point.

The analysis up to this point is conducted under very mild assumptions on the
problem; really no more than necessary to guarantee that the problem is well-posed
in a convenient Sobolev space over short time intervals. The results we obtain re�ect
this. In particular, while the error can be estimated using the a posteriori error
estimate, the results do not imply that the error of the numerical solution decreases if
the residual error of the numerical solution decreases. The reason is that the stability
factor depends on the approximation itself and so it can grow if the discretization is
re�ned. We might expect such behavior in a problem in which solutions �blow-up�
at a �nite time for example.

In Section 5, we obtain stronger results about the quantities in the a posteriori
error estimate by considering systems of reaction-di�usion equations of the form (1.1)
that admit invariant rectangles for the solutions under the assumption that there is an
invariant rectangle for the numerical method as well. We treat this class of problems
because it contains many important models. Examples 1�7 above are problems that
admit invariant rectangles.

We show how to preserve invariant rectangles under discretization in two ways.
First we show that there is an invariant rectangle for the approximation that is close
to an invariant rectangle for the true solution if the residual errors are kept su�ciently
small independent of time. This result applies to all of the �nite element methods con-
sidered in the previous sections. Second, we show that certain �nite element methods
have the special stability property that any invariant rectangle for the solution of the
di�erential equation is also invariant for the approximate solution. These methods
require some modi�cation of the general theory of a posteriori error analysis and we
discuss this as well.

The remaining sections contain details of the analysis.

Acknowledgment. The authors gratefully thank Roland Freund, Jack Hale,
Theodore Hill, David Ho�, Je�rey Rauch, and especially Claes Johnson for useful
advice.

2. General a posteriori error analysis: ingredients for compu-

tational error estimation.

We begin by developing a general theory of a posteriori error analysis of approx-
imate solutions based on residual errors. Roughly speaking, the residual error of an
approximate solution is obtained by substituting the approximation into the di�eren-
tial equation. The residual error is related to the error of the approximate solution
through a factor determined by the stability properties of the problem called a stability
factor.

2.1. An analogous problem in numerical linear algebra. Our approach is
explained easily in the context of the numerical solution of a linear system of equations.
The problem there is to estimate the error of a numerical solution ~X of

A~x = ~b:
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The residual error of ~X is de�ned simply as

~R = A ~X �~b
and is generally not zero. The point is to relate the unknown error ~e = ~x� ~X to the
computable residual error ~R.

There are at least two ways to do this. First, we can use the fact that the residual
error of the true solution is zero to write

A~e = �~R:
We can then try to obtain an approximation of the error by solving this equation
approximately in some fashion. This is not the approach that we use in this paper but
it is related to the classic method of estimating the error using high order asymptotic
error estimates.

Instead, we settle for the less ambitious goal of obtaining an estimate on the size
of a projection of the error. We introduce the dual problem

A>~� = ~ ;

where ~ is any unit vector. Computing, we �nd

j(~e; ~ )j = j(~e;A>~�)j = j(A~e; ~�)j � k~�k k~Rk:
Thus we obtain an estimate on the size of the projection of the error in the direction of
the data for the dual problem in terms of the sizes of the solution of the dual problem
and the residual error. If we could be so fortunate to choose ~ = ~e=k~ek for example,
then we would get an estimate on k~ek.

We call k~�k the stability factor for this problem. It is related to the condition
number of A. In fact it follows that

��� ~e

k~x k ;  
��� � cond  (A)

k~Rk
k~bk

;

where cond  (A) = k~�k kAk = kA�> k kAk. Hence the stability factor is a measure
of the sensitivity of numerical solutions of the problem to computational errors.

First, we lay the groundwork for the analysis for di�erential equations by de�ning
the schemes, residual errors, and stability factors. Next, we derive the a posteriori
error estimate.

2.2. The continuous problem and its discretization. We study a system
of D reaction-di�usion equations consisting of d, 1 � d � D, parabolic equations and
D � d ordinary equations for the RD valued function u = (ui):8><

>:
_ui �r � (�i(u; x; t)rui) = fi(u; x; t); (x; t) 2 
�R+; 1 � i � D;

ui(x; t) = 0; (x; t) 2 @
�R+; 1 � i � d;

u(x; 0) = u0(x); x 2 
; (2.1)

where 
 is an interval in R1 and a convex polygonal domain inR2 with boundary @
,
_ui denotes the partial derivative of ui with respect to time, and there is a constant
� > 0 such that

�i(u; x; t) � � for 1 � i � d and �i(u; x; t) � 0 for the rest:
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We also assume that � = (�i) and f = (fi) have smooth second derivatives and for
simplicity, we write �i(u; x; t) = �i(u) and f(u; x; t) = f(u). We use up and uo to
denote the parts of u associated to the parabolic and ordinary di�erential equations
respectively. In other words, upi = ui for 1 � i � d and upi = 0 for d < i � D and
uo = u� up.

The presence of ordinary di�erential equations in the system (2.1) has strong
consequences for the regularity properties of solutions. In particular, we can expect
parabolic smoothing to occur only for up, while the regularity of uo is generally deter-
mined by the regularity of up and the initial data since f is smooth. This a�ects the
analysis of the approximation error, for which we try to assume minimal regularity of
solutions.

Remark 2.1. It is completely straightforward to extend the a posteriori error estimate
derived in this section to systems of equations that include convection terms of the
form �i(u; x; t) � rui in the i'th equation, 1 � i � d, as well as problems with other
boundary conditions. We do not give the details to save space.

We consider two �nite element space-time discretizations of (2.1) called the con-
tinuous and discontinuous Galerkin methods. A �nite element approximate solution
is a piecewise polynomial function that solves the weak or variational formulation of
(2.1) for all test functions in an appropriate �nite dimensional space. The variational
formulation is obtained by multiplying (2.1) by a test function, integrating over time
and space, and using Green's formula on the di�usion term. Both methods use con-
tinuous piecewise linear functions in space, yielding nominal second order accuracy.
For simplicity, we consider the piecewise constant and piecewise linear discontinuous
Galerkin methods, yielding nominal �rst and third order accuracy in time, and the
piecewise linear continuous Galerkin method, yielding nominal second order accuracy
in time. The analysis however extends directly to methods with higher order accuracy
in time.

With appropriate choice of quadrature, these Galerkin methods yield standard
di�erence schemes. Conversely, many standard �rst to third order implicit di�erence
schemes for (2.1) can be interpreted as one of these �nite element methods imple-
mented with a suitable quadrature. However, the �nite element framework is more
convenient for a posteriori error analysis.

We partition [0;1) as 0 = t0 < t1 < t2 < � � � < tn < : : : , denoting each time
interval by In = (tn�1; tn] and time step by kn = tn � tn�1. To each interval In, we
associate a triangulation Tn of 
 arranged so the union of the elements in Tn is 

while the intersection of any two elements is either a common edge, node, or is empty.
In order to preserve approximation properties in two space dimensions, we assume
that the smallest angle of any triangle in a triangulation is bounded below by a �xed
constant, or equivalently that there is a constant �0 independent of the triangulation
Tn such that area(K) � �0 diam(K)2, where diam(K) is the length of the largest side
of K, for any triangle K 2 Tn.
Remark 2.2. We use �i to denote mesh `parameters' quantifying the qualities of the
mesh and time steps. Constants in the estimates below typically depend on these
parameters.

Note that mesh changes can occur across time nodes. To measure the size of the
elements of Tn, we use a piecewise constant function hn, called the mesh function,
de�ned so hnjK = diam(K) for K 2 Tn, We also use hn;min = minhn(�) and hn;max =
maxhn(�) and denote the global mesh function by h, where hjIn = hn. Similarly, we
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use k to denote the piecewise constant function that is kn on In. When the time level
is clear in the context, we abuse notation by dropping the subscript n.

The approximations are polynomials in time and piecewise polynomials in space
on each space-time �slab� Sn = 
�In. In space, we let Vn � (H1

0 (
))
d�(H1(
))D�d

denote the space of piecewise linear continuous vector-valued functions v(x) 2 RD

de�ned on Tn, where the �rst d components of v are zero on @
. Then on each slab,
we de�ne

W q
n =

�
w(x; t) : w(x; t) =

qX
j=0

tjvj(x); vj 2 Vn; (x; t) 2 Sn
	
:

Finally, we let W q denote the space of functions de�ned on the space-time domain

 � R+ such that vjSn 2 W q

n for n � 1. Note that functions in W q are generally
discontinuous across the discrete time levels and we denote the jump across tn by
[w]n = w+

n � w�n where w�n = lims!tn� w(s). To de�ne the methods, we use the L2

projection operator Pn onto Vn, i.e. Pn : L2(
)! Vn is de�ned by (Pnv; w) = (v; w)
for all w 2 Vn, where (�; �) denotes the L2(
) inner product. We use k k for the L2

norm. The global projection operator P is de�ned by setting P = Pn on Sn.
The continuous Galerkin cG(q) approximation U 2 W q satis�es U�0 = P0u0 and

for n � 1, the Galerkin orthogonality relation8>>><
>>>:

Z tn

tn�1

�
( _Ui; vi) + (�i(U )rUi;rvi)

�
dt =

Z tn

tn�1

(fi(U ); vi) dt

for all v 2W q�1
n ; 1 � i � D;

U+
n�1 = PnU

�
n�1:

(2.2)

Note that U is continuous across time nodes over which there is no mesh change. In
particular, it is usually the case that U�0 = U+

0 . The discontinuous Galerkin dG(q)
approximation U 2W q satis�es U�0 = P0u0 and for n � 1,Z tn

tn�1

�
( _Ui; vi) + (�i(U )rUi;rvi)

�
dt+

�
[Ui]n�1; v

+
i

�
=

Z tn

tn�1

(fi(U ); vi) dt

for all v 2W q
n ; 1 � i � D: (2.3)

See Eriksson, Estep, Hansbo, and Johnson [21] for a general introduction to these
methods. Note that the true solution satis�es both (2.2) and (2.3).

To illustrate, we discretize the scalar problem8><
>:

_u��u = f(u); (x; t) 2 
�R+;

u(x; t) = 0; (x; t) 2 @
 �R+;

u(x; 0) = u0(x); x 2 
;

(2.4)

using the dG(0) method. Since U is constant in time on each time interval, we let
~Un denote the Mn vector of nodal values with respect to the nodal basis f n;igMn

i=1

for Vn on In. We let Bn :
�
Bn
�
ij

=
�
 n;i;  n;j

�
for 1 � i; j � Mn and Bn;n�1 :�

Bn;n�1
�
ij
=
�
 n;i;  n�1;j

�
for 1 � i �Mn, 1 � j �Mn�1 denote the mass matrices

and An :
�
An
�
ij
=
�r n;i;r n;j� denote the sti�ness matrix. Then Un satis�es

�
Bn � knAn

�
~Un � ~F (U�n )kn = Bn;n�1~Un�1; n � 1;
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where (~F (U�n ))i = (f(U�n );  n;i). In practice, these integrals, and often the integrals
for the massmatricesBn and Bn;n�1, are evaluated using a quadrature formula such as
the composite trapezoidal rule or lumped mass quadrature rule, see Section 3.3. IfMn

is constant and the lumped mass quadrature is used to evaluate the coe�cients of Bn
and Bn;n�1 = Bn, then the resulting set of equations for the dG(0) approximation is
the same as the equations for the nodal values of the backward Euler di�erence scheme
for (2.4). Similarly, the cG(1) method is related to the Crank-Nicolson scheme and
the dG(1) method is related to the third order sub-diagonal Padé di�erence scheme.
See Estep [28], Estep and French [29], Estep and Larsson [33], and Estep, Johnson,
and Larsson [32] for further details.

2.3. The residual error. The intuition is that the residual error is computed
by substituting the approximation into the di�erential equation. Rigorously however,
the approximation does not have su�cient regularity to substituted into (2.1) point-
wise. This di�culty is overcome by using the variational formulation of (2.1) and
interpreting the residual error in the sense of distributions. The result is that there
are two contributions to the total residual error: (1) the remainder left over from sub-
stituting U into (2.1) inside elements and time intervals where U is smooth; (2) terms
arising from the low order regularity of the approximation across element boundaries
and time nodes. Of course, these are the two ways in which the approximate solution
is di�erent from the true solution: it does not satisfy the di�erential equation exactly
and it does not have as many derivatives. It turns out to be important to distinguish
the contributions to the total residual error from these two sources since these er-
rors accumulate at di�erent rates. Thus, we split the total residual error into several
contributing residual errors. The suitability of the following de�nitions, which are
suggested by the analysis of Eriksson and Johnson in [23] and [25], becomes apparent
when we derive the a posteriori error estimate and analyze its meaning.

First, we de�ne the residual errors arising from space discretization. It is natural
to �rst divide the residual into two parts corresponding to the parabolic and the
ordinary di�erential equations in (2.1) because of their di�erent regularity properties.
These residuals are distinguished by a superscript p or o. Inside an element K, we
de�ne the two contributions:

Rpx(U )i = _Ui �r � �i(U )rUi � fi(U ); 1 � i � d; (2.5)

Rox(U )i = _Ui � fi(U ); d < i � D; (2.6)

while the remaining coe�cients are set to zero. Here the derivatives are taken only
in the interior of the triangle and in particular in the case of constant di�usion,
r � �irUi � 0.

There is an additional contribution to the residual for the parabolic equation
arising from discontinuity in the �rst derivative of U across element boundaries. This
is de�ned element-wise for K 2 Tn and 1 � i � d:

Rp2(U )i =
Ct
2

�
h(K) area(K)

��1=2
0
B@ Z
@Kn@


(n@K � �i(U )[rUi]@K=2)2 ds

1
CA

1=2

;
(2.7)

where [rU ]@K denotes the jump in rU across the edge @K, n@K is the unit outward
normal to @K, and Ct denotes the constant in the trace inequality applied on an ele-
mentK (see (6.6). This de�nition �ts the intuition of a �discrete� second derivative in
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the case of piecewise linear approximations. For example in the case of constant di�u-
sion and a uniform triangulation of a two dimensional domain under the assumptions
on the mesh made above, there is a constant c such that

Rp2(U )i = c

 X
@K

�
n@K � [rUi]@K

h(K)

�2
!1=2

;

where the sum is over the three sides of K.
Finally, we turn to the residual associated with the time discretization where it is

unnecessary to distinguish between the parabolic and ordinary di�erential equations.
We de�ne the RD valued time residuals interval-wise on Sn by

Rt(U )i = _Ui � (r � �i(U )r)hUi � fi(U ); 1 � i � D; (2.8)

for the cG method and

Rt(U )i = j _Ui � (r � �i(U )r)hUi � fi(U )j+ k�1n j[Ui]n�1j; 1 � i � D;
(2.9)

for the dG methods, where the discrete di�usion operator (r � �i(U )r)h, 1 � i � D,
is de�ned on In by�

(r � �i(U )r)hV;W
�
=
�
�i(U )rV;rW � for all W 2 Vn:

There is an additional term in the residual associated to the dG method arising from
the discontinuity in the approximation across time nodes.

In the case of the scalar problem (2.4) with constant di�usion, the time residual
error becomes

Rt(U ) =

(
_U ��hnU � f(U ); (cG)

j _U ��hnU � f(U )j+ k�1n j[U ]n�1j; (dG)

where the discrete Laplacian �hn is the map from Vn into Vn with matrix B�1n An,
where Bn and An are the mass and sti�ness matrices respectively. This is the resid-
ual of the cG resp. dG time integration schemes applied to the system of ordinary
di�erential equations in t that result from the semi-discretization in space of (2.1) by
the piecewise linear Galerkin �nite element method.

To illustrate these de�nitions, we plot the residual errors for the bistable example
(1.2) discussed in Section 1 computed with the dG(0) method using a uniform space
mesh with 513 elements and the uniform time step .00111. In Fig. 2.1(a), we see that
the initial transient and the later transients are clearly indicated by the size of the
time residual Rt. Likewise, as expected, the space residuals decrease markedly after
the collapse of each well. Note that the non-uniform behavior of the residual errors
in both x and t suggest that e�ciency could be gained by using non-uniform meshes
and time steps.

2.4. The dual problem and a formula for the error. As in the linear alge-
bra example, the next step is to determine a relationship between the residual errors
and the error of the approximate solution by introducing a dual problem to the di�er-
ential equation. However, the argument is complicated by the fact that the di�erential
equation (2.1) is nonlinear, and in order to obtain a linear dual problem, we linearize
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Fig. 2.1. Residual errors for the bistable example (1.2) computed using the dG(0) method with
Mn = 512 and kn = :00111 for all n. (a) Plots of the L2 norms of the residuals versus time. (b)�(d)
Plots of the residual functions versus x at t � 88.

(2.1). Classically, a di�erential equation is linearized either around the true solution
trajectory or around the approximate solution trajectory and then the error of the
linearization is treated as a high order perturbation to the linearized equation. This
approach is problematic when applied to (2.1) however because controlling the per-
turbation term typically requires bounds on high order derivatives of the solution of
(2.1) that may be di�cult or impossible to obtain. This approach is also misleading
because the accumulation of error is not determined solely by the stability properties
of the true or approximate trajectories alone. Rather it is determined by the stability
properties of the continuum of trajectories in a neighborhood containing both the true
and approximate trajectories.

We de�ne the coe�cients for the dual problem by linearizing around an average
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of the true and approximate solutions:

��i = ��i(u; U ) =

Z 1

0

�i
�
us + U (1� s)

�
ds;

��ij = ��ij(u; U ) =

Z 1

0

@�j
@ui

�
us+ U (1� s))r(ujs + Uj(1� s)

�
ds;

(2.10)

�fij = �fij(u; U ) =

Z 1

0

@fj
@ui

(us+ U (1� s)
�
ds:

The regularity of u and U typically imply that �� and �f are piecewise continuous with
respect to t and continuous, H1 functions in space while �� is discontinuous in time
and space.

To derive the dual equation, we subtract the variational equation satis�ed by the
approximate solution given by (2.2) resp. (2.3) on In from the variational form of
(2.1). The linearization we have chosen yields the following pair of equations:

DX
i=1

(�i(u)rui � r i � �i(U )rUi � r i)

=
DX
i=1

0
@��ir(ui � Ui) +

DX
j=1

�bij(uj � Uj)

1
A � r i (2.11)

and
DX
i=1

(fi(u) i � fi(U ) i) =
DX

i;j=1

�fij(ui � Ui) j ; (2.12)

which hold for any test function  . For example, (2.11) follows from the computation

DX
i=1

�
�i(u)rui � �i(U )rUi

� � r i
=

DX
i=1

Z 1

0

d

ds
�i(us+ U (1� s))r�uis + Ui(1� s)

�
ds � r i

=
DX
i=1

Z 1

0

�i(us+ U (1� s)) dsr(ui � Ui) � r i

+
DX

i;j=1

(uj � Uj)

Z 1

0

@�i
@uj

(us + U (1� s))r(uis+ Ui(1� s)) ds � r i:

The terms on the left-hand sides of (2.11) and (2.12) occur in the di�erence of the
two variational equations.

Written out pointwise for convenience, the dual problem to (2.1) associated to
time node tn is8>>>>>><

>>>>>>:

� _�i �r � ���ir�i�+PD
j=1

��ij � r�j =
PD
j=1

�fij�j; (x; t) 2 
� (tn; 0];

1 � i � D;

�i (x; t) = 0; (x; t) 2 @
 � (tn; 0];

1 � i � d;

�(x; tn) = �n(x); x 2 
;

(2.13)



NUMERICAL SOLUTION OF REACTION-DIFFUSION EQUATIONS 19

In the case of the scalar problem (2.4) with constant di�usion, the dual problem is8><
>:
� _� � ��� = �f�; (x; t) 2 
� (tn; 0];

�(x; t) = 0; (x; t) 2 @
 � (tn; 0];

�(x; tn) = �n(x); x 2 
:

In the case of one parabolic equation with nonlinear di�usion coupled to one ordinary
di�erential equation, the dual problem is8>>><

>>>:
� _�1 �r � ��1r�1 + ��11r�1 = �f11�1 + �f12�2; (x; t) 2 
� (tn; 0];

� _�2 + ��21r�1 = �f21�1 + �f22�2; (x; t) 2 
� (tn; 0];

�1(x; t) = 0; (x; t) 2 @
 � (tn; 0];

�(x; tn) = �n(x); x 2 
:

The dual problem (2.13) is actually posed in variational form and we require the
existence, uniqueness, and boundedness of the solution in appropriate Sobolev spaces.
Observe that (2.13) is solved �backwards�, i.e. from tn, where the initial data is given,
to 0 and the time derivative term is multiplied by �1 to compensate. Note also that
�bij = 0 when d < j � D so that the �rst d equations of (2.13) are parabolic partial
di�erential equations while the remaining D � d equations are ordinary.

With these de�nitions, we are in position to derive relationship between the error
e = u � U and the residual errors, which we carry out explicitly for the cG method.
We use the L2 projection operator into the piecewise polynomial functions in time,
denoted by �n : L2(In)! Pq(In), where Pq(In) is the space of polynomials of degree
q or less de�ned on In. We note that the product �nPn : L2(Sn)!W r equals the L2

projection onto W r and that �nPn = Pn�n. We de�ne the global projection operator
� by setting � = �n on Sn

Multiplying the dual problem (2.13) by e, integrating over 
 � (0; tn), and then
integrating by parts in time, we obtain

0 =
DX
i=1

Z tn

0

�
ei;� _�i �r � ��ir�i +

DX
j=1

��ij � r�j �
DX
j=1

�fij�j
�
dt

=
DX
i=1

(e+i (0); �i(0))�
DX
i=1

(e�i (tn); �i(tn))

�
DX
i=1

Z tn

0

�
( _ei; �i) + (��irei;r�i) +

DX
j=1

(ei ��ij ;r�j)�
DX
j=1

(ei �fij ; �j)
�
dt:

Writing
P
i;j ei

��ij �r�j =
P
i;j ej

��ji �r�i and using (2.11) and (2.12), the third term
on the right-hand side simpli�es to

DX
i=1

Z tn

0

�
( _ei; �i) + (��irei +

DX
j=1

��jiej ;r�i)�
DX
j=1

(ei �fij; �j)
�
dt

=
DX
i=1

Z tn

0

�
( _ui �r � �i(u)rui � fi(u); �i)

� �( _Ui; �i) + (�i(U )rUi;r�i) � (fi(U ); �i)
��
dt:
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This expression simpli�es further because u solves (2.1) and abusing notation to let

(v; w) =
PD
i=1(vi; wi) for D�vector valued functions v and w, we obtain

(e�(tn); �n) = (e+(0); �(0))�
Z tn

0

�
( _U; �) + (�(U )rU;r�)� (f(U ); �)

�
dt:
(2.14)

U also nearly solves (2.1), as expressed in the Galerkin orthogonality relation (2.2). We
can therefore insert the interpolant �P� of � inW q to obtain the error representation
formula:

(e�(tn); �n) = (e+(0); �(0))

+

Z tn

0

�
( _U; �P�� �) + (�(U )rU;r(�P�� �))� (f(U ); �P�� �)

�
dt: (2.15)

A similar analysis for the dG method gives

(e�(tn); �n) = (e�(0); �(0)) +
nX
j=1

�
[U ]j�1; (�P�� �)+j�1

�

+

Z tn

0

�
( _U; �P�� �) + (�(U )rU;r(�P�� �))� (f(U ); �P�� �)

�
dt: (2.16)

The �rst term on the right in these formulas describes the propagation of the initial
error e�(0) to time tn by scaling the initial error by the size of the dual solution
over that interval. The remaining terms on the right describe the cumulative e�ect
of errors made in solving the di�erential equation approximately. This part of the
formulation has the same form as the variational equation de�ning the �nite element
method, except that the test function �P� � � is not in the �nite element space.
The test function is small however when the dual solution has su�cient regularity
since it is just the interpolation error of � in the �nite element space. Thus, the size
of the error is determined both by the size of the residual errors and the Galerkin
orthogonality of the approximation.

2.5. The stability factors and the a posteriori error estimate. To derive
the a posteriori error estimate, we split the integrals on the right in (2.15) resp. (2.16)
to obtain expressions involving the residual errors we de�ned above, then take norms
and estimate. If

� 2 L1((0; tn);L2(
)); D
�
t � 2 L1((0; tn);L2(
)); and D

2�p 2 L1((0; tn);L2(
));
(2.17)

where 0 � � � 1 for the cG(1) and dG(0) methods and 0 � � � 2 for the dG(1)
method, then we can take optimal interpolation estimates on �P���, and this leads
to the following de�nitions of the stability factors that scale the various residual errors.
First, there is the stability factor associated to the propagation of the initial error:

S0(0; tn) = k�(0)k: (2.18)

The stability factor associated with time discretization by means of the cG(q) or
dG(q � 1) method is de�ned by

S�t (0; tn) = C�t

Z tn

0

kD�
t �k dt; 0 � � � q; (2.19)
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where C�t is the interpolation constant in the L1 error bound for the L2 projection
into the space of scalar polynomials of degree � (see (6.2)). In order to de�ne the
stability factors associated to space discretization, we denote the part of � associated
to the parabolic and ordinary di�erential equations by �p and �o respectively. Then,

Spx(0; tn) = Cpx

Z tn

0

kD2�pk dt and Sox(0; tn) =
Z tn

0

k�ok dt; (2.20)

where Cpx is the standard interpolation constant for the L2 error bound for the L2

projection into the space of continuous piecewise linear functions Vn (see (6.4)).
The respective values of the stability factors depends on the choice of �n of course.

We discuss the choice of data in Section 4. As a minimum requirement to guaran-
tee that the stability factors are �nite, we typically restrict �n to be a function in
H1

0 (
))
d � (H1(
))D�d.

To illustrate, we compute the stability factors for the heat equation ut� uxx = 0
posed on the interval [0; 1] with Dirichlet boundary conditions. Later in the paper,
we compute approximate stability factors for various nonlinear problems. The dual
problem to the heat equation at tn is found to be the heat equation itself after the
change of variables t! tn � t. If we set �n =

P
i�1 �n;i sin(i�x) then

S0(0; tn) =

0
@X
i�1

1

2
�2n;ie

�2�2i2tn

1
A

1=2

(C1
t )
�1S1t (0; tn) = (Cpx)

�1Spx(0; tn) =

Z tn

0

0
@X
i�1

1

2
�4i4�2n;ie

�2�2i2s

1
A

1=2

ds:

We plot these functions versus tn in Fig. 2.2 for a generic choice of �n in H1
0 . From

Fig. 2.2. Plot of S0(0; tn) and (C1

t )
�1S1t (0; tn) = (Cp

x)
�1S

p
x(0; tn) versus tn for the heat

equation with a suitable H1

0
initial function given for the dual problem.

the plot, we see that S0(0; tn) decays exponentially to zero as tn ! 1, as expected
for the heat equation. The other stability factors tend exponentially to a constant
value � 1:146, indicating that there is essentially no accumulation of discretization
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errors after su�cient time has passed. Again, this is expected of implicit methods for
the heat equation.

We prove the following estimate on the error at time nodes in Section 6. We
let ~Pn denote an interpolation operator into Vn and ~P denote the associated global
interpolation operator de�ned so ~P = ~Pn on Sn. For example, ~Pn = Pn or Qn,
the nodal interpolation operator. In the statement of the theorem, q = 1 for the cG
method and q = 1 or 2 for the dG method.

Theorem 2.1. For 1 � � � q, the error of the cG(q) or dG(q�1) approximation
at time tn, 1 � n, satis�es

j(e�(tn); �n)j � S0(0; tn)ke�(0)k+ S�t (0; tn)kk�Rt(U )kL1(0;tn)

+ Spx(0; tn)
�kh2Rpx(U )kL1(0;tn) + kh2Rp2(U )kL1(0;tn)

�
+ Sox(0; tn)k(I � ~P )Rox(U )kL1(0;tn):

(2.21)

Remark 2.3. The estimate on the projection of e�(tn) in the direction of �n (2.21)
turns into a estimate on ke�(tn)k if we choose �n so that (e�(tn); �n) = ke�(tn)k. For
example, we could choose �n = e�(tn)=ke�(tn)k. The di�culty is that the stability
factors then depend on the unknown error at time tn that we are trying to estimate.
With this choice, therefore, we need to obtain estimates on the stability factors that
are independent of the initial data for the dual problem.

Remark 2.4. Note that the di�erent residual errors are scaled by di�erent stability
factors, giving the potential for the di�erent residual errors to accumulate at di�erent
rates. This is an important consideration when attempting to estimate the error
accurately.

Remark 2.5. We have posed the problem (2.1) beginning at time t = 0 and estimated
the error over [0; tn]. The results extend to problems beginning at some time tn�1
and continuing to some time tm, m � n, with the obvious change in notation, e.g.
S0(0; tn)! S0(tn�1; tm), etc.

In case the solution of the dual problem does not have su�cient regularity to
admit optimal order interpolation estimates, we use weaker stability factors. For
example, we can de�ne

Spx(0; tn) = Cpx

Z tn

0

kr�pk dt;

with the appropriate Cpx, and then a straightforward alteration of the proof of Theorem
2.1 shows

j(e�(tn); �n)j � S0(0; tn)ke�(0)k+ S�t (0; tn)kk�Rt(U )kL1(0;tn)

+ Spx(0; tn)
�khRpx(U )kL1(0;tn) + khRp2(U )kL1(0;tn)

�
+ Sox(0; tn)k(I � ~P )Rox(U )kL1(0;tn):

(2.22)

A weaker stability factor in time can be introduced similarly.
An error estimate at the time nodes for the �nite element approximations cor-

responds to interpreting the methods as �nite di�erence schemes and is usually the
main focus of interest. However, we can also prove an estimate for the error inside
the intervals with a modi�cation of the proof of Theorem 2.1. The loss of optimality
in the term involving the time residual is due to the fact that Galerkin orthogonality
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does not hold over intervals that do not end at a time node. We prove the result in
Section 6.

Theorem 2.2. The error at time tn�1 < t� � tn satis�es

j(e(t�); �(t�))j � j(e�n ; �n)j+ S0(t
�; tn)knkRt(U )kL1(t�;tn)

+ Spx(t
�; tn)

�kh2Rpx(U )kL1(0;tn) + kh2Rp2(U )kL1(0;tn)

�
+ Sox(t

�; tn)k(I � ~P )Rox(U )kL1(0;tn):
(2.23)

In the proof of Theorem 2.1, it is clear that di�erent norms can be taken on the
residual errors and the stability factors. For example, the estimate can be viewed
as a �weighted� norm of the residual errors, with the weights determined by the
interpolation error of the solution of the dual problem. Another possibility is to avoid
taking norms on the right-hand side of (2.15) altogether. This would allow full reign to
the e�ects of cancellation of error and possibly reduce the tendency to over-estimation.
There are some practical di�culties with this approach however. First without clearly
de�ned residual errors, it becomes di�cult to decide how to re�ne the mesh in order
to compute an approximation with greater accuracy given an approximation with a
large error estimate. Second, it becomes di�cult to analyze the a posteriori estimate:
for example, to prove that the error decreases as the residual errors decrease, as we
show in this paper. Third, there is question of reliability. In practice, we can only
approximate the solution of the dual problem for a small set of data. Likewise, we can
only compute the residual errors at discrete times and approximate the integrals on
the right-hand side of (2.15) using a quadrature. The e�ect this has on the estimate,
and in particular on the tendency to chronic underestimation of the error, is di�cult to
determine. Our computational experience with reaction-di�usion problems suggests
that taking norms inside the integrals on the right-hand side of (2.15) does not lead
to severe overestimation of the error most of the time. See Estep and French [29] and
Larson [48] for an analysis of a Hamiltonian system in which using norms in the error
representation does lead to chronic overestimation.

We can also obtain an estimate for di�erent norms of the error by altering the
dual problem. For example, we can obtain a L1(L2) estimate by posing the dual
problem8>>>>>><
>>>>>>:

� _�i �r � ���ir�i� +PD
j=1

��ij � r�j �
PD
j=1

�fij�j =  i; (x; t) 2 
� (tn; 0];

1 � i � D;

�i(x; t) = 0; (x; t) 2 @
 � (tn; 0];

1 � i � d;

�(x; tn) = 0; x 2 
;

where the coe�cients are the same as for (2.13). We derive an error representation
as above, obtainingZ tn

0

(e;  ) dt = (e+(0); �(0))

+

Z tn

0

�
( _U; �P�� �) + (�(U )rU;r(�P�� �))� (f(U ); �P�� �)

�
dt:

for the cG method for example. We de�ne

S�t;2(0; tn) = C�t kD�
t �kL2(0;tn); 0 � � � q;

Spx;2(0; tn) = Cpx kD2�pkL2(0;tn) and Sox;2(0; tn) = k�okL2(0;tn);
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for appropriate C�t and Cpx. Estimating as in the proof of Theorem 2.1, we obtain����
Z tn

0

(e�(tn);  ) dt

���� � S0(0; tn)ke�(0)k+ S�t;2(0; tn)kk�Rt(U )kL2(0;tn)
+ Spx;2(0; tn)

�kh2Rpx(U )kL2(0;tn) + kh2Rp2(U )kL2(0;tn)
�

+ Sox;2(0; tn)k(I � ~P )Rox(U )kL2(0;tn):
(2.24)

It is often the case that on theoretical and practical grounds, the error must be
controlled at all intermediate times even if the results are desired only at some (�nal)
time node tn. In this context, a disadvantage to the pointwise error estimate (2.21)
is that there is a di�erent dual problem associated to each time node. Estimating the
error at every time node thus requires an estimation of the stability factors associated
to each time node. A better approach is to keep control of the error at all times in
the L1 sense via (2.24) and pointwise only at speci�c interesting times via (2.21). For
an example of L1 control of the error in time, see Estep, Hodges, and Warner [30].

3. Interpreting the a posteriori error bound.

In this section, we discuss the meaning of the Theorem 2.1. This is necessary
because without further analysis, the sizes of the residual errors and stability factors
in the a posteriori error estimate are unknown. For example, if the approximation
method is unstable then the residual errors can grow without bound as the mesh and
time steps are re�ned. Likewise, if the solution of the dual problem (2.13) does not
have su�cient regularity, then the stability factors would be in�nite. Recall that a
classic a priori error bound is derived by establishing the consistency and stability of
the numerical scheme after assuming the well-posedness of the di�erential equation
and su�cient regularity of the solution. So far, we have not mentioned any of these
properties in the a posteriori analysis.

As a �rst goal, we show that the a posteriori error estimate is theoretically mean-
ingful in the sense that the quantities on the right-hand side of the estimate (2.21) are
�nite and moreover that the residual errors on any interval can be made arbitrarily
small by re�ning the space mesh and time steps. To do this, we estimate the sizes of
the residual errors and stability factors after postulating a set of local a priori prop-
erties of the continuous problem (2.1), the dual problem (2.13), and the numerical
methods.

But this goal is not our main purpose. An important reason is that bounds on the
stability factors grow exponentially with time in general, for much the same reason
that general a priori error bounds grow exponentially. In practice, this appears to
over-estimate the e�ects of accumulation of error to the point of making the bound
uselessly inaccurate after a short time. Therefore, our second goal is to show that
the a posteriori error estimate is practically meaningful in the sense that the stability
factors and residual errors can be computed or estimated computationally.

Coincidentally, both goals are achieved more or less with the same analysis si-
multaneously. The estimates on the residual errors that indicate the rate they tend
to zero as the discretization is re�ned are used to indicate a strategy for re�ning a
given mesh in order to compute an approximate solution with a desired residual error.
Likewise, the analysis that shows the stability factors are bounded also show that the
solution of the dual problem can be approximated accurately using a �nite element
method once the data and coe�cients are speci�ed. (There remain some important
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issues for computing the stability factors involving the choice of data and coe�cients
that we discuss in Section 4.)

The a priori properties of the continuous problem and the numerical methods used
in the following analysis are typical examples of the kind of results sought after in
standard analysis of (2.1) and roughly speaking are the necessary ingredients to show
the methods converge. It appears likely to be di�cult to establish these properties for
the general problem (2.1), and in fact, our goals could be achieved by making di�erent
assumptions and estimating the residual errors and stability factors di�erently. For
example in several places, we indicate how weaker assumptions can be used. But, the
motivation for the assumptions in this paper is that they can be shown to hold for
many speci�c problems and classes of problems. We discuss an important class that
contains examples 1�9 in Section 3.3.

Remark 3.1. We emphasize that an important goal in the subsequent analysis is to
use minimal regularity of solutions. As mentioned above, this is partly due to the
fact that the regularity of solutions of reaction-di�usion equations is often unknown,
and in any case, we can not expect to �nd globally smooth high order derivatives in
general. There is also a practical reason. As much as possible, we want to choose
mesh and step sizes based on the criteria of controlling the approximation error rather
than choosing mesh and step sizes in order to ful�ll requirements of the theory for
the estimation of the error. Strong requirements on the mesh and step sizes is a
characteristic of some other approaches to error estimation, like those based on high
order asymptotic estimates of the error which require re�ning the space mesh and
time steps relative to the size of higher order derivatives of solutions than appear in
the actual error estimate.

In this section, we make additional qualitative assumptions on the meshes and
time steps. First o�, we assume the meshes are quasi-uniform in the sense that there
is a constant �1 independent of the triangulation Tn such that hn;max � �1hn;min. In
addition, we assume that mesh re�nement is performed so that the meshes are nested,
i.e. Tn is obtained from Tn�1 either by re�nement or coarsening, where in the case
of re�nement, Vn�1 � Vn, and conversely in the case of coarsening, Vn � Vn�1. We
discuss the construction of meshes satisfying these assumptions in Section 4. It seems
likely that for some problems, the results could be extended to allow �locally� nested
meshes under a less stringent quasi-uniformity assumption, i.e. so both re�nement
and coarsening can be used in each time step, but this would at the least complicate
the notation and analysis.

3.1. The size of the residual errors. The basic idea is to estimate the resid-
ual errors in terms of the error itself using the fact that the equation for the �nite
element approximation is an approximation of the continuous di�erential equation.
Quantifying this approximation property is analogous to showing that the method is
consistent and stable over one step in the classic a priori analysis. The �rst result
says that the residual errors tend to zero in the limit of discretization if the error of
the method over one step tends to zero. In practice, it is also necessary to have a
quantitative estimate on the size of the residual errors. For example, we require such
information in proving that the a priori assumptions hold for the class of problems
considered in Section 3.3 and it is useful for deriving a mesh and time step re�nement
strategy. The second result contains precise estimates on the residual errors assuming
a classic style a priori error bound for the �nite element approximation and a set of
energy estimates bounding derivatives of a solution of the equation in (2.1) in terms
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of derivatives of the data hold over short time intervals.
A serious di�culty arises if we try to estimate the residual errors by comparing

the �nite element approximation to the solution of the di�erential equation (2.1) over
even moderately long time intervals. Namely, the error may grow rapidly because of
accumulation and in any case classic a priori error bounds almost certainly do so. On
the other hand, the size of the residual error is a local property in the sense that on a
given interval it is determined by the di�culty of approximating nearby solutions on
that interval. To exhibit this local nature, we �x the value of the approximate solution
U�n�1 at time tn�1 and then estimate the residual errors of the �nite element solution
of (2.1) over the next time step [tn�1; tn] by comparing U to a local solution ~u of the
di�erential equation in (2.1) over the interval that begins with �initial� data ~un�1 at
tn�1 that is close to U

�
n�1. In this way, a priori convergence results are used only over

one time step and the problem of the potentially catastrophic loss of accuracy over
longer times is avoided.

As initial data, U�n�1 is not su�ciently smooth to expect that the corresponding
local solution will have the regularity required in the analysis. So, we form the initial
data by �smoothing� U�n�1. We let ~u denote the solution of the local problem:8><

>:
_~ui �r � (�i(~u; x; t)r~ui) = fi(~u; x; t); (x; t) 2 
 � (tn�1; tn]; 1 � i � D;

~ui(x; t) = 0; (x; t) 2 @
 � (tn�1; tn]; 1 � i � d;

~u(x; tn�1) = ~un�1 = T�hnU
�
n�1(x); x 2 
; (3.1)

where T denotes the solution operator associated to the Dirichlet problem for the
Laplacian on 
, i.e. Tg solves ��Tg = g on 
 with Dirichlet boundary conditions
given by U�n�1 on @
. We illustrate the smoothing in Fig. 3.1.

Fig. 3.1. Plots of ~un�1 and U
�
n�1

where U
�
n�1

approximates a metastable pattern for the
bistable equation with � = :0009 using (a) 8 and (b) 16 uniformly spaced mesh points.

The following lemma, proved in Section 6, implies that ~u has su�cient regularity
for the analysis and gives a bound on the initial error.

Lemma 3.1. Under the mesh assumptions above, the initial data ~un�1 2 H2(
)\
H1(�
) and there is a constant C depending on �i such that

k~un�1 � U�n�1k � Ckh2n�hnU
�
n�1k = O(h3=2n;max):
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Fig. 3.2. (a) Plot of ~un�1 and U�n�1
, where U�n�1

interpolates g(x) which equals x for 0 � x �
:5 and 1� x for :5 < x � 1 using 8 uniformly spaced mesh points. (b) Plot of a least squares line �t
through the data pairs

�
log(h); log(k~un�1 � U

�
n�1

k)
�
where U�n�1

interpolates g(x) using uniformly

spaced meshes. The least squares line has slope 1:5 with correlation �2 = :9997.

We show an example in which this order of convergence is reached in Fig. 3.2. The
implicit constant in the `O' in this result and those following is independent of the
local solution ~u and the mesh and time steps except for the �i. The assumption of
nested meshes is important for this result.

The �rst result (stated in a form to be valid for both the cG and dG methods)
bounds each of the residual errors in terms of the error ~e = ~u � U scaled by factors
depending on derivatives of ~u and the size of U .

Theorem 3.2. Assume that ~u 2 L1(In;H1(
)), _~u 2 L1(In;L2(
)), and ~up 2
L1(In;H2(
)). Then there is a constant C depending on �i, �, and f such that for
1 � i � d,

kknRt(U )ikL1(In) � C
�k~ekL1(In) + knkh�2n ~ekL1(In) (3.2)

+ knkh�1n ~ekL1(In)kr~uikL1(In) + knk�~uikL1(In)

+ knkr~uk2L1(In)
+ knk _~uikL1(In) + knk�hnU

�
n�1;ik

�
;

and for d < i � D,

kknRt(U )ikL1(In) � C
�k~ekL1(In) + knk _~uikL1(In) + knk�hnU

�
n�1;ik

�
;

(3.3)

while

kh2nRpx(U )kL1(In) � C
�k~ekL1(In)(1 + khnr~uk2L1(In)

+ kUk2L1(In)
)

+ khnr~ekL1(In)(khnr~ukL1(In) + kUpkL1(In))

+ knk _~upkL1(In) + kh2n�~upkL1(In)

�
; (3.4)

kh2nRp2(U )kL1(In) � C
�khnr~epkL1(In) + kh2n�~upkL1(In)

�
; (3.5)

and �nally with ~P = P ,

k(I � ~P )Rox(U )kL1(In) � C(khnr~ukL1(In) + k~ekL1(In)); (3.6)
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while with ~P = Q,

k(I � ~P )Rox(U )kL1(In) � C

 X
K2Tn

kh2n(K)D2fo(U )k2L1(In;L2(K))

!1=2

:
(3.7)

If in addition ~u 2 L1(In;H2(
)) then

k(I � ~P )Rox(U )kL1(In) � C
�khnr~uk2L1(In) + kh2n�~ukL1(In) + k~ekL1(In)

�
:
(3.8)

The proof, given in Section 6, uses straightforward but tedious estimates based on
the fact that the residual error of the true solution of (3.1) is zero, a trace inequality,
and an inverse estimate. The latter two ingredients are the reasons for the stricter
mesh assumptions.

The constant C depends on the Lipschitz constants and the sizes of �, ru�, f ,
and ruf and the size of the second derivatives of f in a region containing both U and
~u over In. If we assume a uniform bound on these quantities then C is truly constant
over time. This turns out to be justi�ed in the special case analyzed in Section 5.
Otherwise, the value of C could vary from one interval to the next.

This analysis and the estimates on the residuals simplify considerably in the case
of constant di�usion:

Corollary 3.3. If �i is constant for 1 � i � d, then

kknRt(U )ikL1(In) � C
�k~ekL1(In) + knkh�2n ~ekL1(In) + knk _~uikL1(In)

+ knk�~uikL1(In) + knk�hnU
�
n�1;ik

�
; 1 � i � d; (3.9)

and

kh2nRpx(U )kL1(In) � C
�k~ekL1(In) + knk _~upkL1(In) + kh2n�~upkL1(In)

�
;
(3.10)

while the other estimates in Theorem 3.2 remain the same.
In particular, Theorem 3.2 implies that the residual errors of an approximate

solution of a problem with su�ciently smooth solutions computed using a consistent
and stable scheme can be small even when the error is large. Recall that an analogous
result holds for numerical solutions of linear algebraic systems. This is a rather
startlingly consequence, which we illustrate with the Lorenz system:8><

>:
_x = �10x+ 10y;

_y = 28x� y � xz;

_z = �8
3z + xy;

(3.11)

where we have chosen parameters that are believed to lead to chaotic behavior. Chaos
is perhaps di�cult to de�ne, but certainly for this problem, the error of any numerical
solution grows as time passes and eventually any numerical solution becomes inaccu-
rate. We plot two numerical approximations of the same solution in Fig. 3.3. Following
Theorem 3.2, we can compute a numerical solution while keeping the residual error Rt
over each step below a given residual error tolerance. The a posteriori error estimate
implies that as long as the stability factor is bounded on a given interval, we can de-
crease the error on the interval by decreasing the residual error tolerance. In Fig 3.3
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residual tolerance = 10-4
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Fig. 3.3. Two numerical approximations of the trajectory of the Lorenz system corresponding
to initial data (1;0;0). The numerical solution on the left is computed by keeping the residual
errors below 10�9 on every step and is accurate to within .5%. The numerical solution on the
right is computed by keeping the residual errors below 10�4 on every step and �rst becomes grossly
inaccurate around t = 17:8.

(a), we show a numerical solution computed with residual error tolerance 10�9 that is
accurate to within 5% on [0; 30]. In (b), we plot a numerical solution computed with
residual error tolerance of 10�5 that �rst becomes grossly inaccurate at t � 17:8 and
remains very inaccurate after that. An interesting question is why exactly does the
trajectory in (b) become very inaccurate suddenly? To show that this question has a
wider scope, we plot the x component of numerical solutions computed with increas-
ing accuracy, i.e. decreasing residual error tolerances, in Fig. 3.4 (a). As the residual
error tolerance decreases, the corresponding numerical solution remains accurate for
a longer time as expected. It is interesting to note that all the numerical solutions
become grossly inaccurate for the �rst time in the same region of phase space. This
suggests that there is one mechanism behind the sudden decrease in accuracy. This is
not due to the residual error becoming large suddenly however. We plot the residual
error Rt of the numerical solution shown in Fig. 3.3 versus time in Fig. 3.4 (b). The
residual error does not become large near t � 17:8 even though the error suddenly
increases there. We investigate this further below. See Estep and Johnson [31] for
further numerical analysis of the Lorenz system.

Because the data for the local solution of (3.1) depends explicitly on the mesh
for the n'th interval, we have to determine the dependence of ~u and its derivatives
on hn in order to show that the residual errors actually tend to zero as the mesh
size and time step are re�ned. We do this in the next theorem by assuming more
information about the rate of growth of derivatives of ~u, as measured in terms of
energy estimates, and the rate of convergence of the numerical method, as measured
by an a priori error bound. These assumptions are suggested by well-known properties
of parabolic equations and we prove that they hold for the class of problems considered
in Section 3.3. The proof of the following theorem is presented in Section 6.

Theorem 3.4. Assume that ~u 2 L1(In;H
1(
)), _~u 2 L1(In;L2(
)), and ~u 2
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Fig. 3.4. (a) Plots of numerical approximations of the x component of the Lorenz system
computed with decreasing residual error tolerances versus time. As the tolerance decreases, the
computations remain accurate for longer times. All the computations become grossly inaccurate for
the �rst time in the same region of phase space near the z axis. (b) Plot of the residual error Rt of
the numerical trajectory shown in Fig. 3.3 versus time. The residual error is not particularly large
at the point where the solution becomes grossly inaccurate.

L1(In;H2(
)) and that there is a constant C depending on �i, �, and f such that

kr~ukL1(In) � CeCkn
�kr~un�1k+ 1

�
(3.12)

k�~ukL1(In) � CeCkn
�k�~un�1k+ kr~un�1k+ 1

�
(3.13)

k _~upkL1(In) � CeCkn
�k�~un�1k+ kr~un�1k+ 1

�
(3.14)

k _~uokL1(In) � C: (3.15)

In addition, assume that the numerical approximation satis�es the energy estimates

kUpkL1(In) � C
�kUp;�n�1k+ knkrUp;�n�1k+ kn

�
; (3.16)

kU okL1(In) � C
�kU o;�n�1k+ kn

�
; (3.17)

and the a priori error bound

k~ekL1(In) � Ckh2n�~un�1k+CeCkn
�
knk _~ukL1(In) + kh2n�~ukL1(In)

�
:

(3.18)
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Then with ~P = P ,

kknRpt (U )kL1(In) � CeCkn
�kh2n�hnU

�
n�1k+ kh2nrU�n�1k+ h2n;max

+ k2n
�
h�2n;min + kh�2n �hnU

�
n�1k+ kh�2n rU�n�1k

�
+
�
1 + khn�hnU

�
n�1k+ krU�n�1k

�
� kn
�kh�1n �hnU

�
n�1k+ kh�1n rU�n�1k+ h�1n;min

��
kknRot (U )kL1(In) � CeCknB(U�n�1; hn; kn)
kh2nRpx(U )kL1(In) � CeCkn

�
1 + kU�n�1k+ kh2n�hnU

�
n�1k+ khnrU�n�1k

+ knkrU�n�1k+ kU�n�1k2 + kh2n�hnU
�
n�1k2

+ khnrU�n�1k2 + k2nkrU�n�1k2
� � B(U�n�1; hn; kn)

kh2nRp2(U )kL1(In) � CeCknB(U�n�1; hn; kn)
k(I � ~P )Rox(U )kL1(In) � CeCkn

�khnrU�n�1k2 + khn�hnU
�
n�1k2

+ B(U�n�1; hn; kn)
�
;

where

B(U�n�1; hn; kn) = kh2n�hnU
�
n�1k+ kh2nrU�n�1k+ h2n;max + knk�hnU

�
n�1k

+ knkrU�n�1k+ kn:

Lemma 3.1 implies that kknRpt (U )kL1(In) can be bounded as

O
�
h3=2n;max + k2nh

�5=2
n;min + knh

�1=2
n;min

�
while the rest of the residuals can be bounded as

O
�
h3=2n;max + knh

�1=2
n;min

�
:

Therefore, if we choose kn = o
�
h
5=4
n;min

�
then the residuals all tend to zero as hn;max

and kn tend to zero. If we choose the scaling kn = Ch2n;min, which is expected in light

of (3.18), then all the residuals tend to zero as O(h3=2n;max) as the mesh size and time
steps are re�ned.

Remark 3.2. Estimates (3.16) and (3.17) on the �nite element approximation can
typically be proved for the dG and cG methods following the same analysis used to
show the energy estimates on the continuous solution. We give an example in Section
3.3. The a priori error estimate (3.18) is closely related to the classic a priori error
estimate, but it is simpler to establish since it holds only over one time step. A classic
a priori error bound can be derived after (3.18) is established by using a discrete
Gronwall argument.

Note that this estimate on the residual is not optimal order in time for the higher
order cG(1) and dG(1) methods. An optimal order estimate would require energy
estimates on higher order time derivatives of solutions of (3.1). This in turn requires
su�cient compatibility between the forcing f and the boundary conditions rarely
satis�ed in practice. In the case that an energy estimate for �2~u can be proved, the
a priori estimate on Rt can be modi�ed to be second order in time for the cG(1)
method and third order for the dG(1) method. By the same token, it is possible to
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obtain even weaker estimates on the residual errors if necessary using straightforward
modi�cations of the proofs of Theorems 3.2 and 3.4. For example, (3.13) can be
replaced by

k�~upkL1(In) � CeCkn
�k�~upn�1k+ kr~upn�1k+ 1

�
and (3.18) by

k~ekL1(In) � Ckh2n�hnU
�
n�1k+CeCkn

�
knk _~ukL1(In) + kh2n�~upkL1(In)

+ khnr~uokL1(In)

�
and estimates can be derived that show the residuals tend to zero as O(h

1=2
n;max).

Remark 3.3. Apropos Remark 2.1, the assumptions in Theorem 3.4 are reasonable
for problems with convection terms in the parabolic equations provided the di�usion
`dominates' the convection. Recall that if the di�usion matrix � in (1.1) has diagonal
entries �i while the convection matrices �j have diagonal entries �ji, the di�usion
dominates the convection if there is a constant C > 0 such that �ji � C�i for all i
and j. Otherwise as mentioned, weaker estimates could be derived.

3.2. The size of the stability factors. The last step in the interpretation of
the a posteriori error estimate consists in showing that the dual problem (2.13) has a
unique solution satisfying the regularity conditions (2.17). In other words, we show
that the stability factors are de�ned.

We make some observations about the dual problem (2.13). First, note that while
the coe�cients ��, ��, and �f are discontinuous in time, the discontinuities in time occur
only at the time nodes of the discretization, so we can solve the dual problem on
each time interval In in succession and on each interval the coe�cients are smooth in
time. The size of the coe�cients, for example whether they are uniformly bounded or
not, depends on the stability properties of the original di�erential equation (2.1) and
the numerical method. Since no boundary conditions are imposed on the variables
associated to the ordinary di�erential equations, in general the linear forcing term in
(2.13) does not satisfy the boundary conditions. This gives rise to the possibility of
boundary layers in � a�ecting the size of Spx and S1t .

Note also that when the original problem (2.1) has nonlinear di�usion coe�cients,
the associated dual problem has convection terms, even if the original problem has no
convection. In particular if the di�usion coe�cients vary rapidly or otherwise have
large derivatives, then the convection terms in the dual problem will be large. This
potentially has a strong e�ect on the stability factors, since it is generic to have both
characteristic and boundary layers in solutions of convection-di�usion problems with
strong convection.

In the case that the original system (2.1) consists entirely of parabolic equations,
i.e. d = D, then the techniques described in Lady�zenskaja, Solonnikov, and Ural'ceva
[47] and Racke [58] can be used to establish the required properties of the solution
of the dual problem. The same techniques give the assumed energy estimates once
existence is established for a system of coupled parabolic and ordinary di�erential
equations. We show the necessary results for a class of problems coupling ordinary
and partial di�erential equations with constant di�usion in Section 3.3.

Remark 3.4. An a posteriori error estimate is super�cially similar to an a posteriori
convergence result. An example of such a result is the analysis of the forward Euler
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di�erence scheme for an ordinary di�erential equation in Henrici [43]. By an a pos-
teriori analysis, the scheme is shown to de�ne a Cauchy sequence that converges to
a continuously di�erentiable function which turns out to be the solution. We have
shown that under the right conditions, the residual errors of the Galerkin approx-
imations for (2.1) on any interval can be made arbitrarily small and moreover the
stability factors on a �xed discretization of a time interval [0; T ], where T = tn for
some n, are �nite. But without further information, it does not follow from the a
posteriori error estimate that the error can be made arbitrarily small by re�ning the
mesh and time steps. This is due to the fact that the stability factors depend on the
computed approximation, hence if we re�ne the mesh and time steps to compute an
approximation with a smaller residual error, we also obtain new, and possibly larger,
stability factors. In order to obtain a convergence result, we require bounds on the
stability factors that are independent of the approximation. One way to obtain such
estimates is to show a priori that all approximations computed with su�ciently �ne
time steps and space meshes are contained in a compact set in RD. We discuss this
further in Section 5.

As we mentioned, the analysis bounding the stability factors also provides the
minimum ingredients necessary in order to expect to be able to compute accurate
numerical approximation of the solution of the dual problem and the stability factors.
This is what we do in practice. To illustrate the potential gain from this e�ort, we
consider the Lorenz system (3.11) and the bistable example (1.2) once more. The
technique used to compute the approximate stability factors shown in the following
plots is described in Section 4.

Recall that the trajectory of the Lorenz system plotted in Fig. 3.3 (b) �rst becomes
grossly inaccurate at t � 17:8 but the residual error Rt is not particularly large at
this point. In Fig. 3.5(a), we plot an approximation of the stability factor S1t (0; tn) at
many time nodes. S1t (0; tn) does not grow exponentially at a steady rate. In general,

Fig. 3.5. Log plots of the approximate stability factor S1t (0; tn) versus time for the trajectory
plotted in Fig. 3.3(b). (b) shows the values of the S1t (0; tn) during the �rst period of rapid increase.
This coincides with the transition from orbiting around one nonzero �xed point to orbiting around
the other nonzero �xed point. A line �tted to the data during the period of greatest increase shows
that S1t (tn) is growing exponentially like exp(4:1t) with correlation �2 = :997 during this time.

the parts of trajectories where the solution revolves around one of the nonzero �xed
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points are characterized by a polynomial rate of growth of S1t (0; tn) with respect to
tn. But this slower growth is punctuated by short periods of exponential growth while
a solution passes from the neighborhood of one �xed point to a neighborhood of the
other �xed point. This is clear in Fig. 3.5(b). This exponential growth coincides
exactly with the time that the trajectory �rst becomes grossly inaccurate. In other
words, the cause of the sudden decrease in accuracy of numerical solutions of the
Lorenz system is that trajectories become strongly unstable in a region of phase space
near the z-axis. The instability re�ects the fact that trajectories that are very close
as they approach the z-axis can end up around di�erent �xed points. This is not
re�ected in the residual errors of trajectories in the same region.

During the period of exponential growth, S1t (0; tn) is approximately proportional
to exp(4:1t). This is less than the maximumrate of increase suggested by the standard
a priori error bound. However, we can �nd trajectories that pass closer to the z-axis
d for which S1t does increase like exp(100t), see Estep and Johnson [31].

In Fig. 3.6, we plot the stability factors for the numerical solution of the bistable
problem plotted in Fig. 1.2 and the corresponding error bound. The stability factors

Fig. 3.6. In (a), we plot the approximate stability factors versus time for the trajectory of the
bistable problem plotted in Fig. 1.2. In (b), we plot the corresponding error bound.

grow super-exponentially as the transients are approached, yet overall remain moder-
ately sized because they decrease extremely rapidly to a value close to one after each
transient. This indicates that the trajectory becomes quite stable after each transient.
One possible explanation for this behavior is that the Lyapunov spectrum of the sys-
tem contains just one unstable mode that is initially very close to zero (exponentially
close in

p
�) during the beginning of a metastable phase but then subsequently grows

as time passes. In this case, the exponential factor in the a priori error bound clearly
overestimates the rate of accumulation of errors also fails to indicate the changes in
sensitivity of the solutions to perturbations that is inherent to the metastable phase.

In Section 3.4, we plot approximate stability factors and residual errors for typ-
ical trajectories of the applications discussed in Section 1. The technique used to
approximate the stability factors is described in Section 4.

3.3. Application of the theory to systems with constant di�usion. In
this section, we prove that the a priori assumptions needed for the a posteriori analysis
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hold for the system of reaction-di�usion equations with constant di�usion:8><
>:

_ui � �i�ui = fi(u); (x; t) 2 
�R+; 1 � i � D;

ui(x; t) = 0; (x; t) 2 @
�R+; 1 � i � d;

u(x; 0) = u0(x); x 2 
;

(3.19)

where �i � � > 0 for 1 � i � d and �i = 0 for the rest. The analysis uses standard
energy arguments applied in ways that accommodate the presence of ordinary di�er-
ential equations coupled together with the parabolic partial di�erential equations.

Remark 3.5. The analysis in this section also applies to problems with homogeneous
Neumann boundary conditions.

The local existence and uniqueness of the solution of a system of semilinear
parabolic equations with locally Lipschitz continuous reaction terms is a classical
result. Smoller [62] presents a proof based on a �xed point argument in the case when
the space domain is all of Ri. A simple variation of this argument can be applied
to (3.19) (including ordinary di�erential equations) if we assume that the reaction fp

associated to the parabolic equations satis�es a compatibility condition on the bound-
ary. Namely, if fpj@
 � 0 then there is a � = �(jju0jjH2(
)) such that (3.19) has a
unique solution

u 2 C1
�
(0; �);

dY
i=1

H1
0(
) \H2(
) �

DY
i=d+1

H2(
)
�

contained in some �ball� B(u0; �) � RD centered at the initial value with radius �.
The compatibility assumption removes technical details having to do with regularity
at the boundary of 
. All of the examples mentioned in the introduction, except the
Hodgkin-Huxley equations and the morphogenesis model, satisfy this assumption.

The �rst result, proved in Section 7, gives the energy estimates used to estimate
the residual errors in the a posteriori estimate:

Proposition 3.5. There is a constant C = C(�; L), where L is the Lipschitz
constant of f on B(u0; �), such that

kru(t)k � Ckru(0)keCt; (3.20)

k�up(t)k � k�up(0)k+ Ckru(0)keCt; (3.21)

k�uo(t)k � C
�k�u(0)k+ kru(0)k+ kru(0)k2�eCt: (3.22)

Remark 3.6. In the analysis below, we use the local existence of the solution ~u of
(3.19) on an interval [tn�1; tn�1 + �n] with initial data ~un�1 given at tn�1 contained
in B(~un�1; ~�n) and Proposition 3.5 on the same interval with the obvious change in
the notation.

Remark 3.7. If f does not satisfy the compatibility condition, it is still possible to
show that

krup(t)k � krup(0)k+Ct1=2;

kruo(t)k � C(kru(0)k+M
p
t)eCt;Z t

0

k�up(s)k ds � kru(0)k+M
p
t;



36 D. ESTEP, M. LARSON, AND R. WILLIAMS

where M is the maximum of jf j on B(u0; �). This leads to correspondingly weaker
estimates on the size of the residual errors.

The next ingredients are the existence, stability, and local a priori convergence
properties of the approximationmethods. The existence is again classical. We assume
that given U�n�1 for some positive integer n, there is a maximum time step Kn such
that for all kn � Kn, U exists uniquely on (tn�1; tn) and is contained in the ball
B(U�n�1; �n). Such a result can be proved by a �xed point argument similar to the
argument used to show existence for the di�erential equation. See Estep and Stuart
[34], French and Jensen [38], and Mascagni [49] for related results.

Recall that we analyze the residual errors on In by comparing U to the local
solution ~u of (3.19) on the interval (tn�1; tn] with �initial data� ~un�1 = T�hnU

�
n�1

obtained by smoothing U�n�1. The following result contains the necessary stability
and accuracy estimates on U for the a posteriori theory.

Proposition 3.6. Let Mn denote the maximum of jf j and Ln the Lipschitz
constant of f on the convex hull of B(~un�1; ~�n) [ B(U�n�1; �n). There is a constant
C = C(Mn) such that for all time steps with knLn su�ciently small, the three ap-
proximations satisfy

kUpkL1(In) � C
�kUp;�n�1k+ knkrUp;�n�1k+ kn

�
; (3.23)

kU okL1(In) � C
�kU o;�n�1k+ kn

�
: (3.24)

In addition, there is a constant C = C(�; Ln) such that the cG(1) and dG(1) approx-
imations satisfy

k~u� UkL1(In) � kh2nD2~un�1k+ CeLkn
�
k1=2n khnD2~upkL1(In) + kh2nD2~ukL1(In)

�
+ CeLkn

(
knk _~ukL1(In)

k2nk�~ukL1(In)

(3.25)

and the dG(0) approximation satis�es

k~u� UkL1(In) � kh2nD2~un�1k+ CeLkn
�
k1=2n khnD2~upkL1(In) + kh2nD2~ukL1(In)

�
+ CeLknknk _~ukL1(In): (3.26)

Remark 3.8. It is possible to replace the quantities in the middle on the right in (3.25)
and (3.26) by

k1=2n kr~upkL1(In) + khnr~ukL1(In)

if weaker estimates are desired.

The results in Propositions 3.5 and 3.6 do not exactly match the assumptions in
Theorem 3.4, where the precise estimates on the size of the residual errors are stated.
However, the additional terms in (3.21), (3.25), and (3.26) can be handled similarly
to the terms in (3.13) and (3.18) and the result stated in Theorem 3.4 holds with

B(U�n�1; hn; kn) = kh2n�hnU
�
n�1k+ kh2nrU�n�1k+ h2n;max + kh2n�hnU

�
n�1k2

+ kh2nrU�n�1k2 + k1=2n khn�hnU
�
n�1k+ k1=2n khnrU�n�1k

+ k1=2n hn;max + k1=2n kh3=2n �hnU
�
n�1k2 + k1=2n kh1=2n rU�n�1k2

+ knk�hnU
�
n�1k+ knkrU�n�1k+ kn:
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This does not change the overall asymptotic result.
We conclude by estimating the size of the stability factors in the a posteriori

estimate. The dual problem for (3.19) reads

8>>>>>>>>><
>>>>>>>>>:

� _�i � �i��i =
DX
j=1

�fji �j; x 2 
; tn > t � 0; 1 � i � d;

� _�i =
DX
j=1

�fji �j; x 2 
; tn > t � 0; d < i � D;

�i(x; t) = 0; x 2 
; tn > t � 0; 1 � i � d;

�(x; tn) = �n(x); x 2 
;

(3.27)

where the coe�cients

�fij =

Z 1

0

@fi
@xj

(us+ U (1� s)) ds

are bounded, piecewise di�erentiable functions, continuous everywhere except at time
nodes tn. The techniques used in Lady�zenskaja, Solonnikov, and Ural'ceva [47] apply
directly to give the existence, uniqueness, and regularity of the dual solution required
for the de�nitions of S0, S1t , S

p
x, and S

o
x to make sense. Furthermore, we prove the

following proposition in Section 7.
Proposition 3.7. Let Ln denote the maximum of j �fij j, 1 � i; j � D, on 
 �

[0; tn]. There is a constant C = C(�; Ln) such that

k�(0)k � eCtnk�nkZ tn

0

k�ok ds � C
�
eCtn � 1

�k�nkZ tn

0

k��pk ds � Ct1=2n eCtnk�nk+ t1=2n kr�pnkZ tn

0

k _�pk ds � �eCtn � 1
�k�nk+ t1=2n eLtnk�nk+ t1=2n kr�pnkZ tn

0

k _�ok ds � �eCtn � 1
�k�nk

We summarize this result by stating

max
�
S0(0; tn); S

1
t (0; tn); S

p
x(0; tn); S

o
x(0; tn)

	 � C(�; Ln)e
C(�;Ln)tn

�k�nk+ kr�pnk
�
:

(3.28)

3.4. A stability factor gallery. In this section, we apply the a posteriori theory
to estimate the error of numerical solutions of the nine example problems listed in
Section 1.

Consider �rst the solution of the bistable problem (1.2) starting with the initial
data with two wells plotted in Fig. 1.1. We plotted the evolution of the residual
errors in Fig. 2.1 (a) and of the stability factors in Fig. 3.6 (b). Based on the size of
the stability factors, we conclude that it is possible to compute accurate numerical
solutions over long time intervals when � = :0009. This is born out by the plot of
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the error bound in Fig. 3.6 (c) for the numerical solution using 256 uniformly spaced
elements through the collapse of the second well and moderately sized time steps and
requiring about 15 minutes computation time on a Sparc 10. This is a sharp contrast
to the conclusion suggested by classic a priori error analysis.

We now perform a similar analysis on the other examples listed in Section 1. Note
that many of these examples allow a great variety of behavior in their solutions and
we cannot explore each example fully in this paper. By way of making a touchstone to
compare the stability properties of the di�erent problems, we choose the parameters
and data to produce solutions that converge to a �xed point if possible.

Example 2: equations for two species. We consider the model of predator-prey
interaction analyzed in Smoller [62] with M = �(u1 � �1)(u1 � 1) � �2u2 and N =
��3 � �4u2 + �2u1 for values of the parameters that force the existence of a stable
�xed point and solve the problem until the components converge. We compute with
�1 = �2 = 10�2, �1 = :25, �2 = 2, �3 = 1, �4 = 3:4, and homogeneous Neumann
boundary conditions using CARDS with 256 elements and keeping the time residual
error below :0001. The evolution of the components is displayed in Fig. 3.7.

Fig. 3.7. Equations for two species: plots of U1(�; t) and U2(�; t) at the indicated times.

In Fig. 3.8, we plot the stability factors, residual errors, and error estimate com-
puted by CARDS. Note that the stability factors increase super-exponentially as the
components evolve towards a uniform shape, decrease as the components move to-
wards the �xed point, but then increase substantially again. The cause of the second
increase in instability is not apparent. A �movie� in the phase space shows the solution
spiralling into the �xed point during this period while simultaneously its orientation
as a curve in phase space changes. To study this phenomena more closely, we repeated
this computation using �1 = �2 = 10�4 over the time interval [0; 160]. We plot the
stability factors of the resulting solution in Fig. 3.9. The pattern of increasing and
decreasing stability factors towards the end is clear.

Example 3: Hodgkin-Huxley equations. Following Cooley and Dodge [15], we use:
�1 = :000345, �1 = 120, �2 = 36, �3 = :3, �1 = 115, �2 = �12, and �3 = 10:598,
while for simplicity, we choose homogeneous Neumann boundary conditions. The
actual model requires a nonhomogeneous Neumann condition at x = 0 that simulates
nerve stimulation impulses. We start with non-uniform data in u1 and constant
values for the rest and compute using 512 elements while keeping the time residual
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Fig. 3.8. Equations for two species: in (a) and (b), we plot the stability factors S1t and S
p
x

versus time computed every :5 time unit. In (c), we plot the L2 norms of the residual errors versus
time. In (d), we plot the a posteriori error estimate. In this computation, �1 = � = 10�2.

error below :001 The evolution of the components is displayed in Fig. 3.10. The initial
signal causes a rapid initial increase in U1 while by time 1 it is beginning to decrease
in value again.

In Fig. 3.11, we plot the stability factors, residual errors, and error estimate com-
puted by CARDS. This problem is di�cult to compute and requires a large number
of uniform mesh points in order to maintain a speci�ed level of space residual error.
Notice that the space stability factor increases initially but decreases again as the �rst
component ��attens�. The time stability factor is beginning to increase again as the
amplitude of the solution begins to decrease again.

Example 4: Fitz-Hugh-Nagumo equations. These equations were proposed as a
simpli�ed model of the Hodgkin-Huxley equations and solutions are supposed to have
the same qualitative behavior, see Rauch and Smoller [59]. One natural question about
this model is the possibility of a �threshold� phenomena in solutions corresponding
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Fig. 3.9. Equations for two species: in (a) and (b), we plot the stability factors S1t and S
p
x

versus time for a computation with �1 = � = 10�4.

Fig. 3.10. Hodgkin-Huxley equations: plots of the components of U(�; t) at the indicated times.
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Fig. 3.11. Hodgkin-Huxley equations: in (a) and (b), we plot the stability factors S1t and S
p
x

versus time computed every :05 time unit. In (c), we plot the L2 norms of the residual errors versus
time. In (d), we plot the a posteriori error estimate.

to the fact that there is a minimum level of stimulus needed to excite a nerve. This
translates to determining whether or not �small� initial data converge to zero as time
passes. In fact, it is possible to prove that a class of data leads to solutions that decay
exponentially quickly to zero. We investigate this numerically for the parameter values
�1 = :1, �2 = 0, �1 = :25, �2 = :1, and �3 = 1, with Neumann boundary conditions
using 64 elements in space and keeping the time residual errors below :001. Notice
that this is a coupled parabolic-ordinary system. The evolution of the components is
displayed in Fig. 3.12. The evolution towards the origin is clear.

In Fig. 3.13, we plot the stability factors, residual errors, and error estimate
computed by CARDS. The time stability factor S1t tends to a constant value re�ecting
the exponential stability of the evolution towards the �xed point. The space stability
factor increases to a relatively large value initially as the components evolve towards
becoming uniform but then begins to decay as they move closer to the �xed point.
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Fig. 3.12. Fitz-Hugh-Nagumo equations: plots of U1(�; t) and U2(�; t) at the indicated times.

This is re�ected in the error estimate, which decreases slowly towards zero as the
residuals become smaller.

Example 5: superconductivity of liquids. This is a model of superconductivity of
liquids extensively analyzed in Brown, Donne, and Gardner [8]. With di�usion con-
stants equal to one, it is known that the solutions tend to a continuum of steady-state
solutions of the problem and in some cases to an individual steady-state solution. We
solve the problem with smaller di�usion �1 = �2 = 10�3 and homogeneous Dirichlet
boundary conditions using 64 elements and keeping the time residual error below :001.
The evolution of the components is displayed in Fig. 3.14. The evolution towards a
steady-state solution is clear.

In Fig. 3.15, we plot the stability factors, residual errors, and error estimate
computed by CARDS. As expected when the components converge to a nonconstant
steady-state solution, the space residual errors converge to constant values. The error
estimate marks a mild transient as the oscillations in the �rst component dampen,
but then tends to a constant value as the solution converges to the steady-state.

Example 6: Field-Noyes equations. This is a model for the celebrated Belousov-
Zhabotinsky chemical reaction. It is analyzed brie�y in Smoller [62] and in slightly
di�erent form in Murray [53]. Following Murray, we choose �1 = 2 �104, �2 = 8 �10�4,
�3 = 5 � 103, and �4 = 1 while �1 = �2 = �3 = 1. We impose periodic boundary
conditions and compute with 2048 elements while keeping the time residual below
:001. The rapid evolution of the solution forced very small time steps. This is partly
due to the scaling: if we rescale the problem so the di�usions are on the order of 10�3,
then the time scale of the results presented below would be on the order of 10��20.
The evolution of the components is displayed in Fig. 3.16. The solution forms steep
fronts and this causes large space residual errors.

In Fig. 3.17, we plot the stability factors, residual errors, and error estimate
computed by CARDS. Both stability factors increase monotonically, with the rapid
change of the �rst two components in space re�ected in Spx. The cause of the �spike�
in the plot of Spx is not clear.

Example 7: model equations for �ame propagation. This system arises in the study
of combustion and is analyzed brie�y in Chueh, Conley, and Smoller [12]. u1 and u2
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Fig. 3.13. Fitz-Hugh-Nagumo equations: in (a) and (b), we plot the stability factors S1t and Spx
versus time computed every :1 time unit. In (c), we plot the L2 norms of the residual errors versus
time. In (d), we plot the a posteriori error estimate. In this computation, �1 = � = 10�2.

represent the concentration and temperature of a combustible substance respectively.
We solve the problem with �1 = �2 = 10�3, �1 = :5, �2 = :5, and homogeneous
Neumann boundary conditions using 64 elements while keeping the time residual
error below :001. The evolution of the components is displayed in Fig. 3.18. It is
interesting to see the transfer of the pattern in the concentration into the temperature
as time passes. The concentration converges to zero while the temperature �rst evolves
towards a pattern centered around a non-zero value and afterwards begins to converge
to a uniform state.

In Fig. 3.19, we plot the stability factors, residual errors, and error estimate com-
puted by CARDS. The stability of the problem with respect to discretization in errors
in time is re�ected in the time stability factor S1t . The solution gradually becomes
more stable with respect to discretization errors in space as the second component
tends to a uniform state. Notice the slow decrease in the space residual errors as the
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Fig. 3.14. Model of superconductivity: plots of U1(�; t) and U2(�; t) at the indicated times.

second component ��attens�. We computed the solution to time 150. U1 is indistin-
guishable from zero while U2 has an oscillatory pattern with amplitude less than :06
centered around 1. The error estimate at t = 150 is 2:7� 10�4.

Example 8: model equations for morphogenesis. This is a version of the autocatalytic
Selkov model of glycolysis proposed by Gray and Scott, see Pearson [57], that demon-
strates the great number of patterns that can be formed by solutions of a relatively
simple parabolic equation. We compute the numerical solution for �1 = 2 � 10�5,
�2 = 10�5, �1 = :045, �2 = :065, and periodic boundary conditions using CARDS
with 256 elements and keeping the time residual error below :001. The evolution of
the components is displayed in Fig. 3.20. The solutions form a pattern of layers after
a rapid initial transient which then slowly evolves over a long time until eventually
the solutions converge to constant values. Slight changes in the parameters and the
data lead to completely di�erent patterns of layers.

In Fig. 3.21, we plot the stability factors, residual errors, and error estimate com-
puted by CARDS. It is interesting to compare these stability factors to the stability
factors of the bistable problem displayed in Fig. 3.6. The evolution of the layers in the
two problems occur on essentially the same time scale. But the stability properties of
the solutions are very di�erent. The strong sensitivity of numerical solutions of these
equations to the space discretization is marked by the large values of Spx. The limiting
factor in determining how long accurate solutions can be computed is the number of
mesh points that can be used. The sharp changes in kR1

t (U )k in Fig. 3.21 (c) are due
to the decreases in time steps that are required for the QMR iteration to converge.

Example 9: model for the spread of rabies. This model is described in Murray [53]
in detail. It is a SIR model in which the fox population is divided into three groups:
the susceptible (S), represented by u1, the infected but not infectious (I), represented
by u2, and the infected, rabid (R), represented by u3. Di�usion only occurs for the
rabid foxes. We use the parameters considered by Murray, �1 = :003, �2 = :003,
�3 = :08, and �4 = :46 except that we choose a smaller di�usion, �3 = :001, to get a
more convenient scale in x. We impose homogeneous Neumann boundary conditions
on u3 and give the initial conditions u1 � 1, u2 � 0, and u3 a small �spike� centered
at the midpoint of the interval. We compute with 128 elements keeping the time
residual error below :001. The evolution of the components is displayed in Fig. 3.22.
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Fig. 3.15. Model of superconductivity: in (a) and (b), we plot the stability factors S1t and S
p
x

versus time computed every :5 time unit. In (c), we plot the L2 norms of the residual errors versus
time. In (d), we plot the a posteriori error estimate.

Fig. 3.16. Field-Noyes equations: plots of U1(�; t), U2(�; t), and U3(�; t) at the indicated times.
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Fig. 3.17. Field-Noyes equations: in (a) and (b), we plot the stability factors S1t and Spx versus
time computed every :5 time unit. In (c), we plot the L2 norms of the residual errors versus time.
In (d), we plot the a posteriori error estimate.

The spread of the infected foxes through the domain and the e�ect on the susceptible
population is clear. However, the rabid foxes appear to die out before a plague can
occur. We computed until time t = 1000, by which point u2 � u3 � 0 while u1 is
within :06 of 1 at every x.

In Fig. 3.23, we plot the stability factors, residual errors, and error estimate com-
puted by CARDS. It is interesting to note the linear growth of the space discretization
stability factor Spx and the error estimate in spite of the apparent stability of the �xed
point to which the solution is converging.

4. Practical matters.

In this section, we describe some details of the implementation of the dG and
cG �nite element methods for reaction-di�usion problems and some practical issues
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Fig. 3.18. Model of �ame propagation: plots of U1(�; t) and U2(�; t) at the indicated times.

that arise when using the a posteriori error estimate (2.21) to estimate the error of a
computation.

4.1. Some details of implementation. The main purpose of this section is
to describe how the a posteriori theory can be implemented into a code that solves
a system of reaction-di�usion equations numerically. We do not address issues of
e�ciency. Rather our purpose is to show that the a posteriori error estimate can be
used to estimate the error of numerical solutions of physically interesting problems.
Further details can be found in Estep and Williams [35].

4.1.1. A matrix-free implementation. There are several key factors that
have to be taken into account when designing a general code to solve reaction-di�usion
problems. First, it is commonly necessary to handle some very large vectors and
arrays during the course of the solution, for example the approximation and the
matrix associated to the discretized Laplacian. Second, concerns about accuracy and
e�ciency often require that space meshes and time steps vary as time passes, hence
there is a practical need for �exibility in the dimensioning of arrays and vectors. Third,
there is also a need for �exibility in handling di�erent kinds of boundary conditions
and even di�erent numbers and types of equations for practical application. These
concerns can be handled by writing the code using a matrix-free approach.

The basis for a matrix-free implementation is object-oriented. Actually, object-
oriented thinking has its roots in mathematics and not computer science. As an
example, we consider the meaning of the word "vector". To an old-style Fortran
programmer, a vector is just an array of �oating-point numbers of �xed length and
it is created with a command like DIMENSION V(20). This �xes the size of the array
at the time the program is compiled, which makes assigning memory to the program
and passing the array around the program easy, but does not give �exibility in terms
of rede�ning V. In contrast, to a new-style object-oriented computer scientist, a vector
is an instance of a class, and the class has functions, called methods, that are used
to manipulate the vector. Typical methods include multiplication of the vector by a
scalar, adding two vectors to produce a third, �nding the norm of a vector, and so
on. In other words, the paradigm change is to think about what can be done with a
data object, rather than its contents.

But this of course is nothing more than the classical mathematical de�nition of
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Fig. 3.19. Model of �ame propagation: in (a) and (b), we plot the stability factors S1t and S
p
x

versus time computed every :5 time unit. In (c), we plot the L2 norms of the residual errors versus
time. In (d), we plot the a posteriori error estimate.

vector. Mathematicians usually do not think of a vector in terms of its components,
but rather as a member of a set on which certain operations are de�ned, for example
adding vectors to produce another. In this case, the vector space is a class, the vector
is an instance of the class, and the axiomatic operations are the methods of the class.

The reason for object-oriented thinking, in mathematics or computer science, is
to provide a systematic method for breaking down complex structures into a set of
simpler structures that can be handled independently. In this way, theorems and
software can be reused in new situations that involve known ideas.

If we introduce object-oriented thinking into the old-fashioned programming style,
then the array of numbers V above would be considered to be an object on which the
only method available is a map whose input is the subscript i and whose output is
the corresponding array member V(i). The same is true of a matrix that is stored as
a two-dimensional array of numbers or of a sparse matrix stored in a clever scheme
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Fig. 3.20. Model equations for morphogenesis: plots of U1(�; t) and U2(�; t) at the indicated times.

that reduces storage requirements. In any case, the fundamental method de�ned on
arrays in the classic style programming is accessing an element of the array.

This dichotomy between the abstract mathematical object and the easily imple-
mented array storage of classic programming is the reason that it is very di�cult
to write �exible, e�cient software for solving systems of reaction-di�usion equations.
Following modern programming thought, the solution is to use object-oriented think-
ing in designing the code. The most fundamental example of this �mathematical�
approach is that a matrix is treated as a linear operator rather than a collection of
matrix elements. This is what is meant by a matrix-free implementation, since matri-
ces are accessed only through operations on vectors and are never explicitly formed.
This approach makes the software clean, �exible, and e�cient.

The examples in this paper have been computed using the code CARDS [36],
which uses the method of lines to solve problems of the form (3.19). Codes based
on the method of lines can be viewed as consisting of a PDE solver acting on space
meshes and an ODE solver acting in time. The mathematical structure of CARDS
consists of a sequence of vector spaces:

� Finite element functions Vectors in this �nite dimensional space consist of
continuous, piecewise linear functions on a triangulation of the computational
domain. An important method on this space is the discretized Laplacian.

� Spatial approximations A vector in this space approximates the multiple
�elds that interact in the system (2.1) in space. This space is made of �nite-
element functions and an important method on this space is the evaluation
of the time-derivative of the di�erential equation system with the function f
in (2.1).

� Time-space approximations To solve the system in time, we use an piecewise
polynomial approximation of the solution in time whose coe�cients in each
subinterval consist of spatial approximations associated to a set of nodes
appropriately chosen in each subinterval. An important method on this space
is the estimation of the error using the a posteriori error bound.

Each of these vector spaces is de�ned in terms of the previous one in the sequence.
A linear operator in one space is de�ned as a matrix of linear operators on the previous
space. Evaluation of a linear operator causes evaluation of linear operators in the
previous space, until we get to the base space of �nite-element functions, at which



50 D. ESTEP, M. LARSON, AND R. WILLIAMS

Fig. 3.21. Model equations for morphogenesis: in (a) and (b), we plot the stability factors S1t
and Spx versus time computed every :05 time unit until t = 4 and then every :5 after that. In (c), we
plot the L2 norms of the residual errors versus time. In (d), we plot the a posteriori error estimate.

Fig. 3.22. Model equations for the spread of rabies: plots of U1(�; t), U2(�; t), and U3(�; t) at the
indicated times.
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Fig. 3.23. Model equations for the spread of rabies: in (a) and (b), we plot the stability factors
S1t and S

p
x versus time computed every :5 time unit until t = 20 and then every 1 after that. In

(c), we plot the L2 norms of the residual errors versus time. In (d), we plot the a posteriori error
estimate.

point the operator is de�ned in terms of an array.

To compute a time-step with the ODE solver, we use an operator whose dimen-
sionality is the number of time-nodes according to which Galerkin method is being
used. Evaluation of this operator causes a number of evaluations of a PDE solution
operator in the spatial approximation space. This in turn requires evaluations in the
�nite-element space. The advantage of this architecture is that it separates the code
into layers. For example, the evaluation of the discrete Laplacian is separated from
the description of the PDE, which is separated from the algorithm used for time step-
ping. The ODE software applies with equal facility to ordinary and partial di�erential
equations, as required by the form of (3.19). Furthermore, each software layer makes
its own contribution to the error estimate.
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4.1.2. Solving linear systems of equations: the QMR method and pre-

conditioning. An implicit timestep of a discretized partial di�erential equation in-
volves the repeated solution of a large, sparse linear systems. In consideration of the
matrix-free approach, iterative solvers are a natural choice since the only operations
involving the matrix of the system are multiplication by the linear operator (and pos-
sibly its transpose). The drawback is that iterative methods can converge very slowly
and even diverge. Since a code solving reaction-di�usion equations spends most of
the time solving linear systems, these issues must be considered carefully.

Iterative methods are divided according to whether the system matrix is symmet-
ric or not and/or positive de�nite or not. In the case of the dG and cG discretization
of (3.19), the associated matrices are both unsymmetric and non-positive de�nite.
Reasons for this include the boundary conditions given in (3.19), the presence of con-
vective terms in the more general form of (1.1), the competition between the reaction
and di�usion, and the equations de�ning the approximation. In such problems for ex-
ample, the classic Jacobi and Gauss-Seidel methods typically do not converge. Hence,
we have employed Krylov subspace methods.

Krylov space methods can be classi�ed according to the need to store previous
vectors: The well-known GMRES (Generalized Minimum Residual) method, for ex-
ample, stores all previous iteration vectors, though in practice the method is restarted
to prevent running out of memory. We have chosen the QMR (Quasi-Minimal Resid-
ual) method, introduced in Freund and Nachtigal [39], which performs robustly on the
systems arising during the solution of (3.19) and which does not require storing the
previous iterates. CARDS employs both our own version and the package QMRPACK
written by Freund and Nachtigal [40].

The convergence rate of iterative methods such as QMR is strongly dependent
on the condition number of the linear operator, i.e. the ratio of the highest to lowest
magnitudes of the eigenvalues of the operator. If we can �nd another operator that
both approximates the inverse of the original system matrix and is easy to invert, then
we can use it as a preconditioner to transform the original system into a new system
with a smaller condition number. The sense in which a matrix P approximates the
inverse of a matrix A is that the condition number of PA should be small compared
to the condition number of A. The condition number of A�1A is one of course.

Our analysis of the size of the residual errors depends heavily on the use of nested
meshes. Therefore it is natural to consider the hierarchical basis preconditioner for
solving the linear systems that arise during the implicit time steps. This precondi-
tioner, analyzed in Yserentant [65] and [66], uses the multi-scaled hierarchical �nite
element basis associated to nested meshes to construct a preconditioner for possibly
non-symmetric elliptic problems. Its use in one and two space dimensions yields a
solver with e�ciency approaching that of multigrid while requiring much less regular-
ity.

Hierarchical basis preconditioning is less e�cient applied to parabolic problems,
however speed-up is still possible. In practice, there is a substantial gain in systems
in which the reaction term does not dominate. If the reaction term is dominate,
then it yields only a small decrease in the number of iterations used by QMR and this
savings is overwhelmed by the extra e�ort of the basis transformations required for its
implementation. Thus, we made this preconditioner an option in CARDS. Developing
better preconditioners is certainly an important area of future research.

4.1.3. Choosing time steps and space meshes. One consequence of the
results in this paper is that the a posteriori theory can estimate the error of compu-
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tations that are su�ciently accurate, or equivalently, for which the residual errors are
su�ciently small. The scale of �su�ciently small� depends on the stability factors,
whose approximation we discuss below. But no matter, given a speci�ed residual er-
ror tolerance there arises the practical issue of selecting the time step and space mesh
so that the residual error of the resulting approximation is bounded by the residual
tolerance.

The strategy for choosing time steps and space meshes is dictated by the a pos-
teriori nature of the bound (2.21). Thus, after the approximation is computed, the
residual errors are computed, and the decision to step forward or to go back to the
previous step is made. In either case, we use the size of the current residual errors
to �predict� the correct time step and space mesh for the next step. Details can be
found in Estep [28] and Estep and Williams [35].

There is another restriction on the choice of time steps in practice that is not
re�ected in the analysis of this paper, namely the convergence of the nonlinear and
linear solvers used to solve the discrete equations for the approximation. Since the
matrices involved have the form I + kA, where I is the identity, k is the time step,
and A is a badly conditioned matrix, the convergence is improved if k is decreased.
Likewise, the quality of the initial guess for the Newton iteration, which is computed
using the values of the approximation computed on previous intervals, is improved if
k is decreased. If either iterative process fails to converge, CARDS decreases the time
step arbitrarily and tries again.

4.2. Computing the stability factors. In this section, we discuss several im-
portant issues concerning the approximation of the dual problem. The CARDS code
numerically solves the approximate dual problem (2.13) associated to speci�ed time
nodes obtained by linearizing around the approximation rather than the average of
the approximation and unknown solution as in (2.10). The numerical solution is com-
puted using the same sequence of space meshes and the same or smaller time steps
used for the forward computation, taken in reverse order of course. The hope is that
meshes that are suitable to approximate the solution of the di�erential equation are
also suitable to approximate the solution of the dual problem. In practice, this seems
to work. The dual problem to the dual problem is the forward linearized problem,
hence it is reasonable to expect that the time scale over which the dual problem can
be solved accurately is roughly the same as the time scale over which the forward
problem can be solved accurately.

4.2.1. Archiving the time history of the numerical solution. In order to
form and solve the dual problem (2.13) associated to a time node tn, we must store the
approximate solution of the forward problem over the interval [t0; tn]. CARDS uses a
dynamic archive to store these values. When each time step has been computed, the
solution vector is stored in the archive, together with the time corresponding to the
vector and the number of �oating-point numbers in the vector. During the backward
solve, when a vector is needed at some time, the archive is searched for the times
that bracket the requested time, the vectors are extracted, and a linear interpolant is
constructed.

The archive object is implemented by allocating large blocks of memory to store
many solution vectors, together with an indexing structure that allows fast searching
of the archive to �nd given time values. The implementation is complicated because
the dimensionality of the vectors changes. However within each memory block, the
dimensionality is constant to allow simple indexing of the block. Whenever the di-
mensionality changes, a new block is allocated.
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4.2.2. Choosing data for the dual problem. The a posteriori error estimate
(2.21) is a little unusual in that it is a estimate of a projection of the error e�n onto
a speci�c function �n with norm one. Obviously in many cases, we would prefer
to bound a norm of the error. Intuition suggests that if we compute estimates on
su�ciently many projections of a function in a given inner product, we should be able
to get a good estimate of the size of the function in the corresponding norm. In this
section, we show that this idea can be made precise.

One way to address this issue is to answer the question:

Given a constant 
 : 0 � 
 � 1, what is the probability that


ke�n k � j(e�n ;�n)j

for a randomly chosen �n in (a subset of)

�
� 2 (H1

0 (
))
d � (H1(
))D�d : k�k = 1

	
?

Without loss of generality, we assume that e�n is normalized to have norm one and
compute the probability of the equivalent condition

j(e�n ;�n)j � 
: (4.1)

We �rst answer the analogous question for the error of a cG or dG discretization
of a system of ordinary di�erential equations, i.e. in a setting when the �space� di-
mension is �nite. The a posteriori error estimate in this case (see Estep [28]) estimates
the Euclidean projection je�n � �nj of e�n onto the vector �n that is the data for the
dual problem. Given a constant 
 : 0 � 
 � 1, we compute the probability that
je�n ��nj � 
 for a random vector �n 2

�
� : j�j � 1; � 2 RM

	
.

The probability can be computed using a geometric argument. In Fig. 4.1, we
plot the unit M -sphere together with e�n represented as (0; 0; :::;0; 1)>. The set of
unit vectors in the upper half space whose projection onto e�n is larger than 
 touch
the sphere in the shaded �cap�. The probability of choosing such a vector is therefore

Fig. 4.1. Drawing of the vector e�n and the part of the unit M -sphere containing vectors with
projections on e

�
n greater than 
, for some 
 � 1.
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P�je�n ��nj � 

�
=

area of the �cap�

area of the upper hemisphere
=

Z �

0

�
sin(u)

�M�1
duZ �=2

0

�
sin(u)

�M�1
du

= %(M; �);

where � is the angle subtended by the �cap�. Thanks to J. Rauch, we have an
asymptotic estimate of %

�
M; �) that shows it decreases like sin(�)M for large M , i.e.

geometrically in the dimension. From the �gure, we see that � = cos�1(
). Hence,
P�je�n ��nj � 


�
= %
�
M; cos�1(
)

�
and given r random vectors

�
�n;i

	
in
�
� : j�j � 1

	
,

P
�
max
1�i�r

je�n ��n;ij � 


�
= 1� �1� %

�
M; cos�1(
)

��r
: (4.2)

We plot this function in Fig. 4.2 with (a) M = 3 and (b) M = 10.

Fig. 4.2. A plot of the probability function P
�
max1�i�r je

�
n � �n;ij � 


�
for (a) M = 3 and

(b) M = 10.

Using (4.1), we obtain a estimate on je�n j from the a posteriori estimate on je�n ��nj.
The factor 
�1 appearing on the right-hand side of the resulting estimate re�ects the
amount of �sloppiness� in the estimate. The formula (4.2) implies that for a speci�ed
probability, we can improve the quality of the error estimate (i.e. decrease 
�1) by
increasing the amount of work as measured by the number of data vectors used for
computing dual solutions. Likewise for a �xed level of sloppiness, we can improve the
probability that the a posteriori estimate actually bounds the norm of the error by
increasing the work. In this context, we can interpret probability as being a natural
measure of the reliability of the a posteriori error estimate of the norm of the error.

Returning to the original question, we use this �nite dimensional result to estimate
the probability that (4.1) holds for any 
 < 1 in the case of a reaction-di�usion
equation. For this, we use the fact that the eigenfunctions f ig for the Dirichlet
problem for the Laplacian, chosen to be orthonormal with respect to the L2 inner
product, form a basis for H1

0(
) and write e�n =
P
i ai i. By assumption, we haveP

i a
2
i = 1. We now use the projection of e�n onto the span of the �rstM eigenfunctions
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to reduce the problem to �nite dimensions. We de�ne

e�n;M =
MX
i=1

ai�i

and likewise choose the random data �n from the set SM = span f 1; :::;  Mg with
k�nk = 1.

We �x 
 < 1. Since e�n;M ! e�n in L2, for any � : 0 < � < 1� 
, we have��j(e�n;M ;�n)j � j(e�n ;�n)j�� � �

for all M su�ciently large depending on �. Fixing such an M , we conclude that
j(e�n;M ;�n)j � 
 + � implies that j(e�n ;�n)j � 
. Note that if �n =

P
i bi i then

(e�n;M ;�n) =
P
i aibi. Therefore, using the �nite dimensional result for the case

where we choose r random vectors f�n;ig, we conclude that

P
�
max
1�i�r

j(e�n ;�n;i)j � 


�
� P

�
max
1�i�r

j(e�n;M ;�n;i)j � 
 + �

�
= 1� �1� %

�
M; cos�1(
 + �)

��r
:

(4.3)

Note that since e�n is actually in H2�� for � > 0, we can expect the coe�cients of e�n
with respect to the basis f ig to decay relatively quickly so that M will not be large
in practice.

In Fig. 4.3, we plot the values of approximate stability factors S1t (tn) for the
Lorenz (3.11) and bistable (1.2) examples versus the time nodes tn. In each case, we
show stability factors corresponding to di�erent choices of data for the dual problem
as well as the plotting the maximumvalue at each time node using a darker line. This
is the value that we use when estimating the error in practice.

Fig. 4.3. Plots of approximate stability factors S1t (tn) versus tn for the (a) Lorenz (3.11) and
(b) bistable (1.2) examples. The dark lines show the maximum value obtained at each time node.

Remark 4.1. Another approach to obtaining estimates on ke�n k from (2.21) is to try to
compute an approximation of the direction of e�n that can be used as initial data for
the dual problem and thereby getting an estimate on j(e�n ; �n)j � ke�n k. However, we
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have experimented with this approach using several di�erent approximations based
on heuristic reasoning and in almost every case obtained worse results than those
obtained using random initial data for the dual problem. The main problem is almost
always a consistent underestimation of the error. Of course, if we do a bad job at
estimating the direction of the error but do manage to obtain a partial relationship
between �n and e�n then it is not surprising that j(e�n ; �n)j could be consistently less
than ke�n k.

One exception is an application of this a posteriori theory to the computation of
optimal ground to space missile trajectories (Estep, Hodges, and Warner [30]). The
di�erential equation describing the missile's position is posed with both initial and
�nal states and hence can be treated as a two point boundary value problem e�ciently
rather than using a time-marching scheme. In this case, we obtain a good and cheap
estimate for the direction of the error using Richardson extrapolation based on the
global meshes.

Remark 4.2. Another natural way to address the issue of choosing data for the dual
problem is to look for conditions on the problem that guarantee that the stability fac-
tors can be bounded accurately independent of the choice of data. This is the case for
example with strongly parabolic problems in which transient behavior dies out rapidly
and the stability factors grow very slowly, see Eriksson and Johnson [23], [25], and
[26]. In general, we might expect this to be true for systems with dual problems that
admit an exponential dichotomy or otherwise have a well-de�ned, discrete Lyapunov
spectrum. In such problems, roughly speaking, ergodic analysis shows that almost
all solutions end up behaving similarly after su�cient time has passed. In practice,
this would imply that initially the dual problem should be solved with several initial
data in order to use the probability result above but after a transient period, it would
su�ce to solve the dual problem with one initial value.

4.2.3. Unresolved: linearization and the approximate dual problem.

An important issue in the computation of approximate stability factors is the fact
that we cannot linearize the di�erential equation (2.1) around the average of the true
and approximate trajectories to obtain the coe�cients de�ned in (2.10) because the
true solution is unknown. In practice, we can only solve the �approximate� dual
problem with coe�cients obtained by linearizing around the approximate solution.

It is possible to use a standard a priori error estimate to guarantee that the
approximate and true solutions remain close for at least a short time and from this, we
can obtain a priori error bounds on the approximate stability factors computed from
the dual problem obtained by linearizing around the approximation. Alternatively
when the true solution has su�cient regularity, we can derive the a posteriori theory
by linearizing around the approximation and treating the error of linearization as a
high order perturbation term. See Estep [28] for a derivation of related results in the
case of ordinary di�erential equations. Both of these approaches lead to the conclusion
that the approximate stability factors remain accurate at least over some brief initial
time interval.

We don't give the details for these kinds of results because in fact they are not
very relevant. First of all, the motivation for computing stability factors is to avoid the
kind of overly pessimistic estimates of the growth of perturbations that the analyses
described in the previous paragraph, based as they are on Gronwall arguments, yields.
Secondly, this is not the correct way to think about the error of the stability factors
because we do not require the same kind of accuracy for the stability factors as we
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do, say, for the numerical solution itself. An estimate of the stability factors that is
accurate just to order-of-magnitude can be used to get a reasonably reliable estimate
of the error, by which we mean that the error should be smaller than the estimate
most of the time and never signi�cantly larger than the estimate.

We illustrate the idea that the standard of accuracy for the stability factors is dif-
ferent than the standard for the numerical solution using the Lorenz equations (3.11).
In Fig. 4.4 (a), we plot the values of stability factors S1t (t) versus time computed by
linearizing around a variety of trajectories. The trajectories start with initial data

Fig. 4.4. In (a), we plot the approximate stability factors S1t (t) for the Lorenz equation (3.11)
computed by linearizing around a variety of trajectories. In (b), we plot the corresponding coordinate
x(t). The key listing the initial data is on the right of each plot.

inside the ball of radius :1 centered at (6; 11; 12) close to the attractor but diverge
greatly by t � 5. The divergence is demonstrated clearly in Fig. 4.4 (b). Even so, the
order-of-magnitudes of the stability factors of the di�erent trajectories grow roughly
at the same rate. At any given time node, most of the stability factors could be
used in the a posteriori error estimate to obtain a reliable estimate of the error of the
approximate solution and they all determine the same time scale over which a given
level of accuracy can be maintained.

Since the approximate stability factors are accurate initially and the computed
stability factors indicate the rate at which the error of the approximate solution grows,
the main concern is the rate at which the error in the approximate stability factors
grows. If the error in the approximate stability factors grows at the same rate as the
stability factors themselves, then we might expect the a posteriori error bound to be
reliable. In other words, the degree of reliability is determined by the relative rates of
growth of errors in the numerical solution due to discretization and perturbations in
the solution of the linear dual problem due to perturbations in the trajectory around
which the problem is linearized. Clearly, the scale for comparison depends on the
degree of nonlinearity of the problem in the sense that it depends on the extent to
which nearby trajectories share the same stability properties.

We illustrate the potential for di�erences in the sensitivity of a problem to numer-
ical discretization and to linearization using the bistable problem (1.2). We compute
approximations using �xed evenly spaced meshes with the number of elements M
ranging fromM = 21 to M = 351. To insure that we integrate the resulting systems
of ordinary di�erential equations accurately, we maintain the time residual below the
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tolerance :000001 and thereby keep the contribution to error stemming from the dis-
cretization in time to less than :0001. ForM � 50, the numerical solutions are subject
to �locking� which means that one or more metastable layers actually become stable
while the correct behavior is observed for M � 51. When M = 21, the thinner of the
two wells collapses (though at a di�erent time than for largerM ) while the wider well
becomes �xed. We plot the stability factors S1t (t) versus time for a sample of com-
putations in Fig. 4.5. The locking phenomena is clearly re�ected in the values of the

Fig. 4.5. A plot of approximate stability factors S1t (t) for the bistable problem (1.2) computed
using trajectories computed with varying accuracy in space. The key between M and the stability
factors is listed on the right.

stability factor for M = 21, which remains 1 after the �rst well collapses indicating
that the resulting pattern is stable.

Even though the numerical solutions corresponding to M = 32 and M = 64 are
nearly identical to the eye, the behavior of the two is radically di�erent. In Fig. 4.6,
we plot numerical solutions for equally spaced meshes with M = 32 and M = 64 at
t � 5:6 and again at t � 389. The two solutions are very close at early times but
because the solution on the coarser mesh becomes locked, the numerical solutions end
up quite di�erent at later times. The bistable problem is sensitive to linearization
in the neighborhood of these two approximate trajectories. While the sensitivity
to linearization is not directly re�ected in the a posteriori theory developed in this
paper, the a posteriori error estimate estimates the error to be 2:23, i.e. more than
%200, in the numerical solution withM = 32 elements at the time when the �rst well
collapses. It would be di�cult to trust the accuracy of the numerical solution after
this point. Note that Fig. 4.5 shows that the problem is not sensitive to linearization
around numerical trajectories that are su�ciently accurate. M = 101, M = 201 and
M = 351 all produce nearly the same behavior and stability factors.

Remark 4.3. There is a plausible explanation for this sensitivity around inaccurate
discretizations. It is well known that the eigenvalues of the system of ordinary dif-
ferential equations arising from discretization space of of a linear constant coe�cient
parabolic problem by the �nite element method only approximate the discrete spec-
trum of the parabolic problem. The smallest eigenvalue in magnitude is approximated
to the same order as the solution itself. As mentioned above, the plot of the stabil-
ity factors for the bistable example suggest that during a metastable phase there is
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Fig. 4.6. A plot of numerical solutions computed using equally spaced meshes with M = 32 and
M = 64 at (a) t � 5:6 and (b) t � 389. Even though the numerical solutions are close initially, they
end up being quite di�erent at later times.

one unstable Lyapunov number for the system that is initially very close to zero and
which gradually increases as time passes. If this Lyapunov number is subject to the
same kind of error as the eigenvalues in the linear case, then a coarse discretization
might introduce enough error to change the sign of the unstable Lyapunov number
and make the system stable.

We do not have an analytic method for determining the sensitivity to linearization,
and in any case, it seems to be highly problem dependent. For the computations
presented in this paper, we computed each example using several residual tolerances
and compared the results.

4.3. Testing the accuracy of the a posteriori error estimate. We conclude
this section with a numerical experiment designed to test the accuracy and reliability
of the a posteriori error estimate applied to the bistable problem (1.2). We do not
know the true solution but we compute a very accurate numerical solution u using
the dG(1) method with M = 513 elements and time steps smaller than K = :00004
to use as a reference. We next compute an approximation U using the dG(0) method
(to get the least accuracy in time) using M = 129 elements and time steps greater
than :0004. The reference solution u is expected to be 16 times more accurate in
space and at least 10 times more accurate in time. We approximate the error in U by
computing ku� Uk. We plot this computed �error� together with the error estimate
computed for U versus time in Fig. 4.7 (a). In Fig. 4.7 (b), we plot the ratio of the
computed �error� to the estimate versus time.

Through the collapse of the �rst well, the a posteriori error estimate predicts the
size of the error remarkably well, with the ratio of the error to the estimate hovering
in the range :3�1. After this transient, the ratio remains constant but with values of
size :05�:1. This over-prediction of the size of the error results from the form of the
a posteriori error estimate (2.21) which estimates the error over an interval in terms
of the maximum residual error in the interval. The residual errors in any interval
that contains the collapse of the �rst well but not the second are dominated by the
residual errors from the transient period of the collapse of the �rst well. Thus, the
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Fig. 4.7. Results of the accuracy experiment. In (a), we plot the computed error ku � Uk
together with the a posteriori error estimate for the dG(0) approximation U versus time. In (b), we
plot the ratio of the computed �error� to the estimate versus time.

error estimate over-predicts the size of the error after the collapse of the �rst well
until the last transient. Note however that the ratio still remains quite constant -
which veri�es that the a posteriori estimate is predicting the rate of accumulation of
errors over long time intervals very well.

If we replace the maximum residual error in the a posteriori estimate (2.21) by
the local residual error, the ratio of the �error� to the resulting �estimate� remains
on the order of one throughout the computation. We plot the �error� together with
the estimate obtained by multiplying the residual errors on the time interval [tn�1; tn]
by the corresponding stability factors associated to the time node tn versus time in
Fig. 4.8 (a). In Fig. 4.8 (b), we plot the ratio of the computed �error� to this modi�ed

Fig. 4.8. In (a), we plot the computed error ku � Uk together with the estimate obtained by
multiplying the residual errors on the time interval [tn�1; tn] by the corresponding stability factors
associated to the time node tn versus time. In (b), we plot the ratio of the computed �error� to this
quantity versus time.
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estimate versus time. Practically speaking, we had to use constant step sizes in this
computation in order to align the time nodes for the two computations. The result is
that the residual errors of the numerical solutions can vary greatly as time passes - as
explained above. If the step sizes and space mesh are adjusted to keep the residual
errors at every step approximately the same size, the tendency to overestimation due
to the form of the a posteriori error estimate is greatly reduced.

Note that the a posteriori error estimate is smaller than the computed �error�
at a single time step occurring immediately after the last transient. We suspect that
this is due to time step discrepancies between u and U . In any case, the discussion in
Section 4.2.2 explains that there is some probability that this can occur. We computed
stability factors using three di�erent initial guesses for the dual problem and obtained
very close values in each case.

5. Improving stability by preserving invariant rectangles under
discretization.

The discussion so far has centered on general problems of the form (2.1) under
mild assumptions about the stability; really no more than necessary to guarantee
that the problem is well-posed in a convenient Sobolev space over a short time inter-
val. The results we have presented re�ect this. For one thing, the estimates on the
residuals in Theorem 3.4 guarantee that the residual errors on any step can be made
small by re�nement, but both the constants and the discrete derivatives of U in the
bounding quantities can vary with the time interval. Likewise, the stability factors
on any given interval are �nite, but the sequence of stability factors associated to a
progressive sequence of time nodes can grow super-exponentially. This prevents us
from concluding, for example, that the error of the approximation becomes smaller if
the residual errors are made smaller. Recall Remark 3.4.

But this is no more than can be expected, because the assumptions we have made
so far even allow �nite time �blow-up�. Consider the initial value problem ut = u2

and u(0) = 1 with solution u(t) = (1 + t)�1 for example. We plot the stability factor
S1t (tn) for a sequence of times :01 : : : :95 in Fig. 5.1 together with the sequence of
time steps used in the computation. In this example, the sequence of stability factors
associated to the time nodes grows super-exponentially and the time steps have to be
decreased correspondingly in order to keep the residual errors uniformly bounded.

One way to get stronger results is to consider problems with special stability
properties that prevent such wild behavior. For example, there is the class of strongly
dissipative, e.g. strongly di�usion-dominated, problems considered by Eriksson and
Johnson ([22], [25]). This class is a natural progression from linear problems since
they share much of the same behavior. The results for these equations are strong: the
constants in the a posteriori estimate are uniform in time and the stability factors for
a progressive sequence of time nodes can be shown to grow only logarithmically with
time. Consequently for such problems, the error is controlled directly by controlling
the residual errors, and it is possible to control the error over very long time intervals.
On the other hand, the possible behavior of solutions of such problems is relatively
limited and none of the examples discussion in the introduction satisfy the strong
assumptions with physically relevant values for the di�usion.

It is therefore interesting to consider parabolic equations under assumptions that
prevent unbounded growth in solutions but do not force all the solutions to converge
rapidly to a �xed point. We apply the general theory developed in Section 2 to the
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Fig. 5.1. In (a), we plot S1t (tn) for ut = u2 and u(0) = 1 on a log scale at a sequence of time
nodes :01 : : : :95. The same values for the stability factor are given by a range of tolerances. In (b),
we plot the sequence of time steps on a log scale required to keep the residual errors bounded by a
�xed tolerance.

system of reaction-di�usion with constant di�usion (3.19) under an condition that
guarantees the existence of an invariant rectangle, which is a generalized rectangle
R =

Q
i [ai; bi] in R

D centered at the point P with sides parallel to the coordinate
axes inside of which any solution of (3.19) remains as long as it exists. Namely, we
assume that the reaction f satis�es

n@R(u) � f(u; �; �) � 0 for u 2 @R; (5.1)

where n@R(u) is the outward unit normal to @R at u. See Fig. 5.2. This guarantees
that R is invariant for (3.19), see Chueh, Conway, and Smoller [12] and Smoller [62].

While more specialized than the general system (2.1), systems of the form (3.19)
under assumption (5.1) model many interesting physical situations. For example:

1. The bistable equation admits the invariant rectangle [��; �] for any � � 1.
2. If we choose M = �(u1 � �1)(u1 � 1) � �2u2 and N = ��3 � �4u2 + �2u1

with 0 < � < 1 and �1 � �3=�2 < 1 in the predator-prey model, then the
equations admit arbitrarily large invariant rectangles.

3. The Hodgkin-Huxley equations admit arbitrarily large invariant rectangles.
4. The Fitz-Hugh-Nagumo equations admit arbitrarily large invariant rectan-

gles.
5. If the �i are all equal in the equations modelling the superconductivity of

liquids, then any rectangle containing the unit circle juj = 1 is invariant.
6. If we choose r1 > maxf1; ��12 g, r2 > r1, and r3 > �3r2 in the Field-Noyes

equations, then the rectangle R =
�
(u1; u2; u3) : 0 � u1 � r1; 0 � u2 �

r2; 0 � u3 � r3
	
is invariant.

7. If we choose the initial data so that 0 < u1(x; 0) < r1 and 0 < r2 � u2(x; 0)
for all x in the �ame model in Example 7, then the region R =

�
(u1; u2) :

0 � u1 � r1; r2 � u2
	
is invariant.

Perhaps the greatest bene�t arising from the existence of an invariant rectangle
is the resulting compactness of the set of solutions. First of all, the existence of an
invariant rectangle means that the solution (3.19) exists uniquely for all time. This
follows from the local existence result by a standard bootstrap argument that uses the
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fact that we can replace local bounds on jf j and the Lipschitz constant of f by bounds
over R. Below, we let M denote the maximum of f on R, and L the maximum of
the �rst and second order partial derivatives of f on R. An analogous argument also
applies to the approximation methods to give global existence of the approximants.

The existence of an invariant rectangle for u also means that ru and �u are
continuous functions for smooth initial data in R. This follows by di�erentiating
(3.19) with respect to x to obtain linear equations with smooth, bounded coe�cients
for the various partial derivatives of u. Also, the constants Ln in the energy estimates
on u in Proposition 3.5 can be set to L so the estimates (3.20)� (3.22) hold uniformly
in the data. Likewise, if there is an invariant rectangle R for the approximation U
then the constants Mn and Ln in Proposition 3.6 can be set toM and L respectively
and the estimates on U in that result hold uniformly in the data. This in turn implies
that the constants in the estimates on the residual errors (3.4) can be taken uniform
with respect to the time interval.

We can also draw some strong conclusions about the stability factors if there
is an invariant rectangle for both u and U . In this case, we can take Ln � L in
Proposition 3.7 and get bounds on the stability factors that hold uniformly for all
approximations in the invariant rectangle. This means that the stability factors as-
sociated to a progressive sequence of time nodes grows at most exponentially quickly,
regardless of the approximations used to compute the stability factors. Likewise, we
can numerically solve the dual problems associated to di�erent approximations and
compute approximate stability factors uniformly well.

One consequence of these results is that it is relatively easy to use the a posteriori
estimate on a projection of the error (2.21) to get a estimate on the norm of the error.
As mentioned in Remark 2.3, we can obtain such a estimate by making a special
choice of data for the dual problem, for example �n = e�n =ke�n k for the dual problem
at tn. But, recalling (3.28), choosing the initial data for the dual problem depending
on the error means that the size of stability factors associated to tn depends on the
size of the error and its gradient tn. Since we are trying to estimate the size of the
error at tn, we therefore require a bound on the stability factors at tn in the case
�n = e�n =ke�n k that is independent of e�n .

As long as u and U remain inside some rectangle R, kek remains uniformly
bounded. To control krepk, we use the stability estimates in the following proposi-
tion, proved in Section 8.

Proposition 5.1. Under the assumptions of Propositions 3.5 and 3.6 and as-
suming in addition that u and U remain in Ro and only a �nite number of mesh
coarsenings is allowed on any �xed time interval, there is a constant C = C(�;M )
such that

krup(t)k � krup(0)k+ Ct1=2; t � 0; (5.2)

krUp;�n k � CkrUp;�0 k+ Ct1=2n ; tn � 0: (5.3)

By these estimates and (7.2), we can bound krepk at later times in terms of the
regularity of Up at the initial time. More precisely, there is a constant C = C(�;M )
such that

krep;�n k � Ckh1�h1U
p;�
0 k+ krUp;�n�1k+Ct1=2n ; n � 0:



NUMERICAL SOLUTION OF REACTION-DIFFUSION EQUATIONS 65

We restate (3.28) as there are constants C1 = C1(�;M;L) and C2 = C2(L) such that

max
�
S0(0; tn); S

1
t (0; tn); S

p
x(0; tn); S

o
x(0; tn)

	
� C1e

C2tn
�kh1�h1U

p;�
0 k+ krUp;�0 k�; n � 0: (5.4)

Remark 5.1. It is useful to distinguish the time dependence of the bounds on the
derivatives of the solutions in Proposition 5.1 and Proposition 8.1 below from the
time dependence of the stability factors in the a posteriori error estimate (2.21).
The stability factors re�ect both the possible growth in the size of derivatives of the
solution, like (5.2) and (5.3), and the possible accumulation of errors.

We turn now to study conditions which guarantee the existence of an invariant
rectangle for the Galerkin approximations. When considering the preservation of
an invariant rectangle under discretization, at least two possibilities come to mind:
(1) the approximation properties of the numerical method imply that there is an
invariant rectangle for the approximation that is close to an invariant rectangle for
the true solution; (2) the approximation method has the special stability property
that any rectangle on which (5.1) holds is also invariant for the approximation. We
obtain results for each situation. In the �rst result, we derive a condition on the size
of the residual error that guarantees an �approximate� invariant region exists when
the vector �eld has the property that it points inwards with a minimum angle on the
boundaries of a family of concentric rectangles. In the second result, we modify the
Galerkin methods and show that the resulting approximations have the same invariant
region as the solution if the time steps are su�ciently small.

Remark 5.2. All the results in this section hold for problems with homogeneous
Neumann boundary conditions and nonconstant di�usion and many of the results
extend to problems with nonlinear di�usion and even gradient terms provided the
equations are `di�usion-dominated'.

5.1. Preservation of a �fuzzy� invariant rectangle. The rough idea is to use
the a posteriori error estimate (2.21) to keep the approximation of a solution starting
with data inside an invariant rectangle R to within a given distance (tolerance) � to
the solution. As long as this is possible, then the approximation remains inside a
rectangle with boundary a distance � away from the boundary of R.

There are two di�culties with this approach. First, the estimates on the residual
errors that guarantee that residual errors, and hence the error, can be made small by
re�ning the time step and space mesh, depends on comparing the approximation to a
local solution of the di�erential equation started with data obtained by smoothing the
approximation. Since the approximation may be outside R or near its boundary, this
local solution may also start with data outside the invariant rectangle. This di�culty
can be overcome after observing that all of the examples above admit a family of
concentric invariant rectangles �lling a region of space. By keeping the distance
between a solution remaining in a relatively small rectangle and the corresponding
approximation su�ciently small, we can hope to keep the approximation and any
associated local solutions inside a relatively larger invariant rectangle.

The second di�culty is that the a posteriori estimate on the error may grow
exponentially quickly with time, if the bounds in Lemma 3.7 are the only information
we have about the size of the stability factors. To keep the distance between a solution
remaining inside an invariant rectangle and the corresponding approximation below
a uniform bound, we obtain a time-dependent condition on the size of the residual
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errors, and moreover, a condition that decreases exponentially quickly as time passes.
The �rst result we present shows that under the appropriate assumptions, there is
a time-independent condition on the size of the residual errors that guarantees the
approximation remains inside an approximate invariant rectangle for all time.

More precisely, we assume the existence of inner and outer rectangles Ri � Ro

with sides parallel to the coordinate axes and centered at the same point P , containing
the origin, and with r := dist (@Ri; @Ro) > 0. We let li denote the length of the
smallest side of Ri, M = maxRo

jf j, and L denote the maximum of the �rst and
second order partial derivatives of f on Ro. We also assume that there is a 
 > 0
such that

f(v) � n@R�
(v) � �
M < 0; v 2 @R�; (5.5)

for all rectangles Ri � R� � Ro with sides parallel to the coordinate axes and
centered at P and dist (@R�; @Ri) = �, where n@R�

(u) denotes the outward pointing
unit normal to @R� at the point u 2 @R�. See Fig. 5.2. Roughly speaking, we prove

o

i

r

r

f

f

f

f

n

P

Fig. 5.2. The invariant rectangles Ri � R� � Ro.

that U remains in R� for all � su�ciently small provided that U�0 is in Ri and U is
computed so that the residual errors over each time step are kept smaller than a �xed
fraction of �.

The proof hinges on the fact that a local solution ~u of the di�erential equation
in (3.19) for t > tn�1 starting with initial data ~un�1 = ~u(tn�1) in the outer rectangle
Ro must enter the inner rectangle Ri after a �nite time. The reason is conceptually
easy to understand in the case of a scalar ordinary di�erential equation, _~u = f(~u),
where Ro = [ao; bo] and Ri = [ai; bi] with ao < ai < bi < bo. On [bi; bo], f(�) < �
M ,
hence integration gives

~u(t) � bi � ~u(tn�1) � bi � 
M (t � tn�1)

as long as ~u remains in [bi; bo]. We conclude that ~u enters Ri for t� tn�1 su�ciently
large depending on 
, M , and the size of the invariant intervals.

The case of a scalar parabolic partial di�erential equation, _~u = �~u+f(u), is more
complicated because the di�usion term does not necessarily have the correct sign to
force ~u to decrease at every point even if ~u is partly in RonRi. In other words, ~u may
be increasing in some parts of 
 even while decreasing in other parts. We illustrate in
Fig. 5.3. If we consider the point �x(t) at which ~u obtains a positive maximumat time t,
which must be in the interior of 
 because of the Dirichlet boundary conditions, then
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bi

bo
u~(t,x)

i

o

x

u

Fig. 5.3. One di�culty in showing that a solution of a parabolic equation must enter the inner
rectangle Ri when the vector �eld points inwards in RonRi.

~uxx(t; �x(t)) � 0 and therefore _~u(t; �x(t)) � f(~u(t; �x(t)) and apparently the argument
used for an ordinary di�erential equation would apply. Unfortunately, the fact that
�x(t) is not a continuous function of t causes di�culties with this argument. Finally,
additional complications ensue when considering systems of equations. To overcome
these, we follow Smoller [62] and deal with a functional measuring the size of the
smallest rectangle that contains a solution that decreases as time passes.

We �rst de�ne a norm on RD associated to Ri by

jwjRi
= infft � 0 : w 2 tRig:

In other words, jwjRi
is the smallest multiple of Ri that contains the point w. We

de�ne a continuous functional FRi
(�) on the bounded continuous functions on 
 by

FRi
(w) = sup

x2

jw(x)jRi

:

We also recall the de�nition of the upper Dini derivative of a function g,

�Dg(t) = lim
k!0

g(t+ k)� g(t)

k
:

The following proposition is a extension of Theorem 14.19 of Smoller [62],
Proposition 5.2. Suppose that ~u is a smooth solution of (3.19) with

FRi
(~u(tn�1; �) > 1 and f satis�es the minimum angle assumption (5.5). Then for

any time tn�1 � t with FRi
(~u(t; �)) > 1,

�DFRi
(~u(t; �)) � �2
M

li
:

Smoller gives a proof for systems of equations with one space variable posed on R,
but the extension to the present case is straightforward. This result implies that ~u
must enter a smaller rectangle immediately after any time t with FRi

(~u(t; �)) > 1. In
fact, it is not di�cult to show that if

�DFRi
(~u(t; �)) � �2
M

li
for tn�1 � t � t�

then

FRi
(~u(t; �)) � FRi

(~u(tn�1; �))� 2
M

li
(t� tn�1) for tn�1 � t � t�:

(5.6)
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This result applies to all of the examples above with invariant regions. For exam-
ple in the case of the bistable equation, we choose 1 < ri and 2

p
3=3 � ro, then any

interval [��; �] with ri � � � ro is invariant and f satis�es (5.5) with


 =

���� ri � r3i
ro � r3o

���� :
We prove that U preserves an invariant region by using the a posteriori error

estimate to control the error between U and local solutions ~u. There are two cases to
treat. If U�n�1 is contained in Ri, then we control the residual error on the next step

to a su�cient degree to keep U�n from going too far outside Ri. If U�n�1 is outside
Ri, then we control the residual errors on subsequent steps until the local solution
~u starting at time tn�1 enters Ri, drawing U along with it. These two cases lead to
di�erent conditions on the residual errors.

The proof we give uses an energy estimate on the growth of the discrete second
derivative �hU . It appears to be technically di�cult to obtain such an estimate on
the part of U solving an ordinary di�erential equation, hence we restrict the problem
(2.1) to the case d = D.

Theorem 5.3. Assume that U�0 is contained in Ri and � � r=5. Then there is
a constant C = C(�;M;L) such that U�n 2 R4� for all n � 0 and x 2 
 provided that
U�n , n � 1, is computed so that the following conditions are met:

1. If U�n�1 is contained in Ri, then the mesh and time steps for the next interval
should be chosen so that

Ck log(hn)h3=2n �hnU
�
n�1k � � (5.7)

and in addition

C
�
1 + khn�hnU

�
n�1k+ krU�n�1k

��kh�1=2n knRt(U )kL1(In)

+ kh3=2n Rpx(U )kL1(In) + kh3=2n Rp2(U )kL1(In)

+ kh3=2n �hnU
�
n�1k+ kh3=2n rU�n�1k

�� e�CK�: (5.8)

This guarantees that U�n is contained in R2�.
2. At any time node tn�1 at which U�n�1 is contained in R2�, but not contained

in Ri, a new mesh and time step should be chosen so that

C
�k log(hn)h3=2n �hnU

�
n�1k+ k log(hn)h3=2n rU�n�1k

� � e�C(�+K)�
(5.9)

and

C
�
1 + khn�hnU

p;�
n�1k+ krUp;�n�1k

��k(h3=2n + h�1=2n kn + h�5=2n k2n)�hnU
�
n�1k

+ k(h3=2n + h�1=2n kn + h�5=2n k2n)rU�n�1k+ kh3=2n + h�1=2n kn + h�5=2n k2nk
�

� e�C(�+K)�; (5.10)

where

� =
3li

2
M
�;

and U�m should be computed using this mesh size and possibly smaller time
steps on all subsequent steps m � n until U�m is contained in R2� once again.
The maximum number of steps needed to reach time node tm� with U�m� con-
tained in R2� is �nite and depends only on � , �, M , L, and U�n�1.
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The conditions (5.7)�(5.8) and (5.9)�(5.10) respectively are satis�ed on all su�ciently
re�ned time steps and space meshes.
We prove this in Section 8.

Remark 5.3. A stronger result would be that there is a maximum time step and mesh
size depending on L, M , and �, such that U�n remains in R4� for all time. But the
estimates we use to control the error depend on the discrete derivatives of U in the
residual errors and these discrete derivatives of U can grow even when U is con�ned
to an invariant rectangle.

Remark 5.4. The preservation of an invariant rectangle is a pointwise property while
the a posteriori theory in Section 2 is developed for L1(L2). In converting from L1
to L2 in x, there is a loss of order. For example, there is a constant C independent of
h such that 

log(hn)h2n�hnU

�
n�1kL1(
) � C



log(hn)h3=2n �hnU
�
n�1k:

The loss of order is apparent when comparing quantities in (5.8) and (5.7) to the
corresponding expressions in Theorem 2.1.

Remark 5.5. This shows that the nodal values of U remain inside R4� for all time.
Using an interior estimate on the error related to (2.23), it follows that U is contained
in R5� for all t � 0 and x 2 
.

The requirement that the tolerance depend on the �width� of the region on which
the reaction term points inwards is natural as we illustrate with the initial value
problem (

ut = f(u) = 2
�
1:01� u2

��
1� u2

�
u e�:5u

2

; t > 0;

u(0) = :5:
(5.11)

We plot f(u) for �5 � u � 5 in Fig. 5.4(a). This problem has the invariant region��p1:01;
p
1:01

�
since f points inwards for 1 < juj < p

1:01. The minimum value

of f in
�
1;
p
1:01

�
is approximately �3:03 � 10�5 and the width of the interval is

approximately :005. For juj < 1 and juj > p
1:01, f points outwards. In particular,

solutions starting with initial values larger than
p
1:01 tend to in�nity. In Fig. 5.4(b),

we plot numerical solutions starting with initial value :5 computed while keeping the
residual errors below :09 and :001 respectively. The less accurate computation steps
outside the invariant region at one point and subsequently grows without bound after
that.

5.2. Exact preservation of an invariant rectangle. In the previous section,
we used the accuracy of the approximation method to show that it preserves an
approximate invariant region under suitable assumptions. Now we consider �nite
element methods that have the property that (5.1) guarantees that R is also invariant
for the approximation. This is not a universal property and it is related to the issue of
whether or not a �nite element approximation satis�es a maximumprinciple when the
method is applied to the heat equation. The dG and cG methods using the standard
Galerkin �nite element discretization in space analyzed above do not, see Thomée
[63]. A typical manifestation of this are small oscillations in the approximation near
the transition to steep layers.

Consequently, we modify the dG and cG methods by using the lumped mass
quadrature to evaluate the space integrals in the variational formulationand show that
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Fig. 5.4. (a) Plot of f(u) for the problem in (5.11). (b) Plots of numerical solutions of (5.11)
starting with initial value :5 computed by keeping the residual errors below :09 and :001 respectively.

the resulting methods have the desired invariance. We also outline the modi�cations to
the general a posteriori theory needed to cover the new methods, including the analysis
of the quadrature error. This introduces some technical di�culties because relatively
high order derivatives of the solution are involved and we consider systems consisting
only of parabolic equations. This issue is also interesting from the standpoint that
the standard Galerkin �nite element method using lumped mass quadrature is closely
related to the standard �ve point di�erence scheme. Further discussion of the lumped
mass quadrature can be found in Raviart [60], Chen and Thomée [11], and Thomée
[63].

The lumped mass quadrature formula is a composite rule computed by using the
two dimensional trapezoidal rule on each triangle. For a triangle K 2 Tn, we let aK;j,
j = 1; 2; 3, denote the vertices and de�ne the quadrature formula on K as

Z
K

g(x) dx � QK(g) =
1

3
area (K)

3X
j=1

g(aK;j):

Note that

QK(g) =

Z
K

Qn(g) dx;

and the quadrature rule has precision 1. We de�ne the discrete inner product and
norm as

(g1; g2)hn =
X
K2Tn

QK(g1; g2) and kgk2hn = (g; g)hn :

The expression �lumped mass� refers to the fact that the mass matrix associated to
( ; )h is a diagonal matrix with the diagonal entry in each row equal to the sum
of the entries in the corresponding row in the standard mass matrix Bn.

The continuous Galerkin-lumped mass cGL(q) approximation U 2 W q satis�es
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U�0 = Q0u0 and for n � 1, the Galerkin orthogonality relation8>>><
>>>:

Z tn

tn�1

�
( _Ui; Vi)hn + �i(rUi;rVi)

�
dt =

Z tn

tn�1

(fi(U ); Vi)hn dt

for all V 2 W q�1
n ; 1 � i � D;

U+
n�1 = QnU

�
n�1;

(5.12)

and the discontinuous Galerkin-lumped mass dGL(q) approximation U 2W q satis�es
U�0 = Q0u0 and for n � 1,Z tn

tn�1

�
( _Ui; Vi)hn + �i(rUi;rVi)

�
dt+

�
[Ui]n�1; V

+
i

�
hn

=

Z tn

tn�1

(fi(U ); Vi)hn dt

for all V 2W q
n; 1 � i � D: (5.13)

We write out the discrete equations in matrix-vector form for the cGL method in
(8.10).

The derivation of the error representation formula begins in the same way as for
the standard Galerkin methods. With the same de�nition of the dual problem (2.13),
we once again obtain (2.14):

(e�i (tn); �n;i) = (e+i (0); �i(0)) �
Z tn

0

�
( _Ui; �i) + (�i(U )rUi;r�i)� (fi(U ); �i)

�
dt:

But the analysis is di�erent from this point because of the di�erence between the
discrete version of Galerkin orthogonality (5.12) and the standard version (2.2) with
no quadrature. Now we obtain the error representation:

(e�i (tn); �n;i) = (e+i (0); �i(0))

+

Z tn

0

�
( _Ui; �P�i � �i) + (�i(U )rUi;r(�P�i � �i)) � (fi(U ); �P�i � �i)

�
dt

+

Z tn

0

�
_Ui � fi(U ); �P�i)h � ( _Ui � fi(U ); �P�i)

�
dt: (5.14)

We recognize the last term on the right as re�ecting the error due to the use of
quadrature. A similar analysis for the dGL method gives

(e�i (tn); �n;i) = (e�i (0); �i(0)) +
nX
j=1

�
[Ui]j�1; (�P�i � �)+j�1

�

+

Z tn

0

�
( _Ui; �P�i � �i) + (�i(U )rUi;r(�P�i � �i)) � (fi(U ); �P�i � �i)

�
dt

+

Z tn

0

�
_Ui � fi(U ); �P�i)h � ( _Ui � fi(U ); �P�i)

�
dt

+
nX
j=1

�
([Ui]j�1; �P�

+
j�1;i)h � ([Ui]j�1; �P�

+
j�1;i)

�
: (5.15)

We de�ne the residuals on In componentwise for 1 � i � D as

R1
Q(U )i =

X
K2Tn

kh2nD2fi(U )kL2(K)
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and

R2
Q(U )i =

(
kh2nr( _Ui � fi(U ))k (cGL)

kh2nr( _Ui � fi(U ))k + kh2n[rUi]n�1kk�1n (dGL)

as well as the stability factor

SQ(0; tn) =

Z tn

0

kr�k dt:

Note that the form of these residual errors is slightly di�erent than the previous
residual errors in that the norm is included in the de�nition. We plot these residual
errors and the stability factor for the computation on the bistable problem carried
out above in Fig. 5.5.

Fig. 5.5. (a) Plot of the residual errors for the computation on the bistable equation shown in
Fig.s 1.1 and 2.1.

In Section 8, we prove
Theorem 5.4. There is a constant C depending on �i and q such that for

1 � � � q, the error of the cG(q) or dG(q � 1) approximation at time tn, 1 � n,
satis�es

ke�(tn)k � S0(0; tn)ke�(0)k+ S�t (0; tn)kk�Rt(U )kL1(0;tn)

+ Spx(0; tn)
�kh2Rpx(U )kL1(0;tn) + kh2Rp2(U )kL1(0;tn)

�
+CS0t (0; tn) max

[0;tn]
R1
Q(U ) + CSQ(0; tn) max

[0;tn]
R2
Q(U ): (5.16)

Remark 5.6. The residual errors and stability factors present in the �rst three terms
on the right-hand side of (5.16) arise from the approximation of the solution of the
di�erential equation by a piecewise polynomial function via Galerkin's method. The
residuals and stability factors in the last two terms occur because we discretize the
(variational form of) the di�erential operator by means of quadrature. We see that
these two residual errors accumulate at possibly di�erent rates than the original resid-
ual errors and hence it can be important to distinguish the two sources of discretization
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error. This point is hidden in the classic analysis of the �ve point di�erence scheme,
which as we noted is closely related to the �nite element method with lumped mass
quadrature. See Eriksson, Estep, Hansbo, and Johnson [21] for further discussion of
this issue.

We now estimate the size of the residual errors associated to quadrature.
Theorem 5.5. Assume that r _~u 2 L2(In;L2(
)) and ~u 2 L1(In;H

2(
)). Then
there is a constant C depending on �i, �, and f such that for 1 � i � D,

R1
Q(U ) � CkhnrUk2L1(In)

(5.17)

and

R2
Q(U ) � C

�
k�1n khn~ekL1(In) + k�1n kh3n�~ukL1(In) + k�1=2n kh2nr _~ukL2(In)

+ kh2nrUkL1(In)

�
(5.18)

Under further assumptions on the solution and approximation, we can get more precise
estimates.

Theorem 5.6. Assume that ~u 2 L1(In;H
1(
)), _~u 2 L1(In;L2(
)), r _~u 2

L2(In;L2(
)), and ~u 2 L1(In;H2(
)) and that there is a constant C depending on
�i, �, and f such that

kr~ukL1(In) � CeCkn
�kr~un�1k+ 1

�
k�~ukL1(In) � CeCkn

�k�~un�1k+ kr~un�1k+ 1
�

k _~ukL1(In) � CeCkn
�k�~un�1k+ kr~un�1k+ 1

�
kr _~ukL1(In) � k�~un�1k+ Ckr~ukL2(In):

In addition, assume that the numerical approximation satis�es the energy estimates

kUkL1(In) � C
�kU�n�1k+ knkrU�n�1k+ kn

�
;

krUkL1(In) � C
�
k1=2n k�hnU

�
n�1k+ krU�n�1k+ k1=2n

�
and the a priori error bound

k~ekL1(In) � Ckh2n�~un�1k+CeCkn
�
knk _~ukL1(In) + kh2n�~ukL1(In)

+ k1=2n khnr _~ukL2(In) + k1=2n khn _~ukL1(In)

+ knkhnr~uk2L1(In) + k1=2n khnr~ukL1(In)

�
:

Then in addition to the estimates in Theorem 5.6,

R1
Q(U ) � CeCkn

�
knkhn�hnU

�
n�1k2 + khnrU�n�1k2 + h2n;max

�
and

R2
Q(U ) � CeCkn

�
k�1n kh3n�hnU

�
n�1k+ k�1n kh3nrU�n�1k+ k�1n h3n;max

+ khn�hnU
�
n�1k+ khnrU�n�1k+ hn;max

+ k�1=2n kh2n�hnU
�
n�1k+ k�1=2n kh2nrU�n�1k+ k�1=2n h2n;max

�
:
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We conclude that the bound on all of the residual errors is on the order

O
�
k�1=2n h3=2n;max

�
+O

�
k2nh

�5=2
n;min

�
:

If we choose kn � h1+
n;min where 1=4 < 
 < 1, then all the residuals tend to zero as the
time step and mesh size are re�ned. The proofs of Theorems 5.5 and 5.6 are similar
to the proofs of Theorems 3.2 and 3.4 and we do not give the details.

Under the assumption of an invariant rectangle for the solution of (3.19) with
d = D and the associated dGL and cGL approximations, the assumptions in Theorems
5.5 and 5.6 can be veri�ed for (3.19). To save space, we do not give the details. Instead,
we turn to establishing conditions that guarantee that any rectangle on which (5.1)
holds is invariant for the dGL and cGL approximations. This result is closely related
to results of Ho� for �nite di�erence schemes for reaction-di�usion equations that
admit invariant rectangles in [45] and the analysis of a backward Euler discretization
of the Hodgkin-Huxley equations presented in Mascagni [49].

We prove the following theorem in Section 8.
Theorem 5.7. Assume that the vector �eld f satis�es (5.1) and let L denote the

maximum of the �rst partial derivatives of f on R. Also assume that the maximum
internal angle of any triangle in a triangulation is less or equal to �=2. There are
constants �1; �2 > 0 such that if the time steps satisfy knL � �1 and kn=h2n;min � �2
for all n � 1 then R is an invariant region for the approximation.

6. Details of the analysis in Section 2.

Proof of Theorem 2.1. We present the proof for the cG method. The analysis of the
dG methods is similar.

We split the time and space projections of � as �P�� � = �P�� P�+ P�� �
in the error representation formula (2.15) to obtain

(e�(tn); �n) = (e+(0); �(0))

+

Z tn

0

�
( _U; (� � I)P�) + (�(U )rU;r((� � I)P�))

� (f(U ); (� � I)P�)
�
dt

+

Z tN

0

�
( _U; (P � I)�) + (�(U )rU;r((P � I)�))

� (f(U ); (P � I)�)
�
dt

= I + II + III:

We estimate each of the terms I, II, and III, beginning with term I where we
use the Cauchy-Schwarz inequality and the boundedness of the L2 projection to get:

j(e+(0); �(0))j � ke�(0)k k�(0)k = S0(0; tn)ke�(0)k: (6.1)

Since P� 2 V , we can rewrite II:

II =

Z tn

0

�
_U � (r � �(U )r)hU � f(U ); (� � I)P�

�
dt

=

Z tn

0

�
Rt(U ); (� � I)P�

�
dt:
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Multiplying and dividing by k�, where 0 � � � q for the cG(q) method or dG(q-1)
method and using the Cauchy-Schwarz inequality we get

jIIj � kk�Rt(U )kL1(0;tn)

Z tn

0

kk��(� � I)P�k dt:

Finally, we use the facts that �P = P� and kPk � 1 and the following standard in-
terpolation error estimate for the L2 projection (see Ciarlet [13]) on each time interval
In, Z

In

kk��n (I � �)vk dt � C�t

Z
In

kD�
t vk dt; (6.2)

where C�t depends only on the order �. We obtain

Z tn

0

kk��(� � I)P�k dt =
Z tn

0

kk��P (� � I)�k dt �
Z tn

0

kk��(� � I)�k dt

� C�t

Z tn

0

kD�
t �k dt;

and thus we conclude

jIIj � S�t (0; tn)kk�Rt(U )kL1(0;tn): (6.3)

To begin the analysis of III, we �rst rewrite the di�usion term at a given time
t 2 Ij , 1 � j � n, by splitting the integral into a sum of integrals over the elements
and using Green's formula on each to getZ



�i(U )rUi � r(P � I)�i dx =
X
K2Tj

Z
K

�i(U )rUi � r(P � I)�i dx

=
X
K2Tj

�
Z
K

(r � �i(U )rUi)(P � I)�i dx

+
X
K2Tj

Z
@Kn@


�i(U )[rUi]@K=2 � n@K(P � I)�i ds;

where as above n@K is the unit outward normal of @K. With this in mind, III
becomes

III =

Z tn

0

�
_U �r � �(U )rU � f(U ); (P � I)�

�
dt

+
nX
j=1

Z
Ij

X
K2Tj

Z
@Kn@


�(U )[rU ]@K=2 � n@K(P � I)�ds dt

= IV + V:

Taken in entirety, IV splits naturally into parts associated with the parabolic and
ordinary di�erential equations:

IV =

Z tn

0

�
Rpx(U ); (P � I)�p

�
dt+

Z tn

0

�
Rox(U ); (P � I)�o

�
dt:
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We estimate the �rst term by multiplying and dividing by h2 and using the Cauchy-
Schwarz inequality and the standard interpolation error estimate for the L2 projection
in space,

k(h�2(I � P )vk+ kh�1r(I � P )vk � CpxkD2vk: (6.4)

This gives����
Z tn

0

�
Rpx(U ); (P � I)�p

�
dt

���� �
Z tn

0

kh2Rpx(U )k kh�2(P � I)�pk dt

� kh2Rpx(U )kL1(0;tn)C
p
x

Z tn

0

kD2�pk dt

= Spx(0; tn)kh2Rpx(U )kL1(0;tn):

We treat the second term in IV di�erently because the associated ordinary di�erential
equations do not exhibit elliptic smoothing. We use the orthogonality property of the
L2 projection to insert the interpolant ~P :����

Z tn

0

�
Rox(U ); (P � I)�o

�
dt

���� =
����
Z tn

0

�
(I � ~P )Rox(U ); (P � I)�o

�
dt

����
� k(I � ~P )Rox(U )kL1(0;tn)

Z tn

0

k(P � I)�ok dt

� Sox(0; tn)k(I � ~P )Rox(U )kL1(0;tn):

We conclude that

jIV j � Spx(0; tn)kh2Rpx(U )kL1(0;tn) + Sox(0; tn)k(I � ~P )Rox(U )kL1(0;tn):
(6.5)

Finally, we estimate V . Note that by the de�nition of Rp2(U ), it follows that

kh2Rp2(U )kL2(K) = kh3=2�(U )[rU ]@K=2kL2(@K):

Multiplying and dividing with h3=2 and estimating using the Cauchy-Schwarz inequal-
ity,

jV j �
nX
j=1

Z
Ij

X
K2Tj




h3=2�(U )[rU ]@K=2 � n@K




L2(@K)




h�3=2(P � I)�




L2(@K)

dt

�
nX
j=1

Z
Ij



h2Rp2(U )



0
@X
K2Tj




h�3=2(P � I)�



2
L2(@K)

1
A

1=2

dt:

Now we employ a trace inequality on the boundary of the elements:

kvk2L2(@K) � CtkvkL2(K)krvkL2(K) : (6.6)

which implies that

kvk2L2(@K) �
Ct
2

�
kh�1=2vk2L2(K) + kh1=2rvk2L2(K)

�
:
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Taking v = h�3=2(P � I)�, we get

kh�3=2(P � I)�k2L2(@K) �
Ct
2

�
kh�2(P � I)�k2L2(K) + kh�1r(P � I)�k2L2(K)

�
:

Summing over all of the elements and applying the interpolation inequality (6.4), we
get 0

@X
K2Tj

kh�3=2(P � I)�k2L2(@K)

1
A

1=2

� Cpx
Ct
2
kD2�k:

We conclude that

jV j � Cpx
Ct
2

Z tn

0

kh2Rp2(U )k kD2�k dt � Ct
2
Spx(0; tn)kh2Rp2(U )kL1(0;tn):

(6.7)

Collecting the estimates (6.1), (6.3), (6.5), and (6.7), we reach the desired result.

Proof of Theorem 2.2. We begin as in the derivation of the error representation for-
mula (2.15), integrating from 0 to t� and then splitting the integral into the di�erence
of the integral from 0 to tn and the integral from tn to t�. Writing � = P�+(I�P )�,
we get

(e(t�); �(t�)) = (e(tn); �(tn))

+

Z t�

tn

�
( _U;P�) + (�(U )rU;rP�)� (f(U ); P�)

�
dt

+

Z t�

tn

�
( _U; (I � P )�) + (�(U )rU;r(I � P )�)

� (f(U ); (I � P )�)
�
dt

= I + II + III:

Expression III is estimated exactly as the same term in the proof of Theorem 2.1.
However, II must be estimated di�erently since the lack of Galerkin orthogonality of
the approximation over (t�; tn) means that we cannot insert an interpolant in front
of the dual solution �. Therefore, we make a straightforward estimate

jIIj �
Z t�

tn

kRt(U )k k�k dt � knkRt(U )kL1(t�;tn)k�kL1(t�;tn):

7. Details of the analysis in Section 3.

Proof of Lemma 3.1. The �rst claim follows from standard elliptic regularity results
since �hnU

�
n�1 is continuous and the Dirichlet boundary conditions given by U

�
n�1 are

in H1. As for the second, it follows from the de�nition of �h and the assumption of
nested meshes that U�n�1 is nothing more than the Galerkin �nite element approxima-
tion of ~un�1 in Vn and the classic a priori error bound for the �nite element method
for Laplace's equation implies that

k~un�1 � U�n�1k+ khnr(~un�1 � U�n�1)k � Ckh2n�hnU
�
n�1k:
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We compute

kh1=2n �hnU
�
n�1k = sup

 2Vn
k k=1

�
�hnU

�
n�1; h

1=2
n  

�
:

Using the de�nition of �h and Green's theorem and then estimating, we get�
�hnU

�
n�1; h

1=2
n  

�
=
�rU�n�1; h1=2n r �

=
X
K2Tn

Z
@Kn@


�
n@K � rU�n�1

�
@K
h1=2n  ds

�
X
K2Tn

k�n@K � rU�n�1�@KkL2(@K) kh1=2n  kL2(@K):

Using the trace inequality (6.6) and the following inverse estimate: there is a constant
C depending on �i such that for all W 2 Vn,

khnrWk � CkWk : (7.1)

we �nd

kh1=2n  k2L2(@K) � Ck kL2(K) khnr kL2(K) � Ck kL2(K):

The Cauchy-Schwarz inequality therefore implies that

sup
 2Vn
k k=1

�
�hnU

�
n�1; h

1=2
n  

� �
 X
K2Tn



�n@K � rU�n�1�@K

2L2(@K)

!1=2

:

Since Vn�1 � Vn, the expression on the right-hand side is independent of hn.

Proof of Theorem 3.2.
We �rst estimate the time residual error Rt for the cG(1) method. From the

formula for Rt, we subtract _~ui �r � �i(~u)r~ui � fi(~u) � 0 to get

kknRt(U )ik � knk _Ui � _~uik+ knk(r � �i(U )r)hUi �r � �i(~u)r~uik
+ knkfi(U )� fi(~u)k

= I + II + III:

I is estimated simply

I =


�U�n;i � ~un;i

�� �U+
n�1;i � ~un�1;i

�
+
�
~un;i � ~un�1;i

�� _~uikn




� 2k~eikL1(In) + 2knk _~uikL1(In)

Note that II has to be estimated only for the part of U associated to the parabolic
part of the di�erential equation. To do this, we use the weighted elliptic projection
Rh into V de�ned componentwise for 1 � i � d by�

�i(~u)rRhvi;rWi

�
=
�
�i(~u)rvi;rWi

�
for all W 2 V:

For this projection, there is a constant C (depending on �) such that

kRhvi � vik+ khnr(Rhvi � vi)k � Ckh2nD2vik:



NUMERICAL SOLUTION OF REACTION-DIFFUSION EQUATIONS 79

See Thomée [63]. Also krRhvik � krvik. We write

II � knk(r � �i(U )r)hUi � (r � �i(U )r)hRh~uik
+ knk(r � �i(U )r)hRh~ui �r � �i(U )r~uik

= IIa + IIb:

To estimate IIa for 1 � i � d, we use the de�nition

IIa = kn sup
 2V
k =1k

�
(r � �i(U )r)hUi � (r � �i(U )r)hRh~ui;  

�

= �kn sup
 2V
k =1k

�
�i(U )(rUi �rRh~ui);r 

�� kn sup
 2V
k =1k

�
(�i(U )� �i(~u))rRh~ui;r 

�

= IIa1 + IIa2:

Using the mesh assumption, the Cauchy-Schwarz inequality, and the inverse estimate
(7.1), we get

kIIa1k � Ck�i(U )k kh�1n r(Ui � Rh~ui)k khnr kkn
� Ckh�2n (Ui �Rh~ui)kkn � C

�
knkh�2n ~eik+ knkh�2n (~ui � Rh~ui)k:

Similarly, we estimate

kIIa2k � Ckh�1n (�i(U ) � �i(~u))k krRh~uik khnr kkn � Ckh�1n ~ek kr~uikkn;
and proceed in the same fashion.

To estimate IIb, we start with the de�nition

IIb = kn sup
 2H1

0 (
)
k k=1

�
(r � �i(~u)r)hRh~ui �r � �i(~u)r~ui;  

�
:

Now we use the de�nitions of Rh and P to get�
(r � �i(~u)r)hRh~ui �r � �i(~u)r~ui;  

�
=
�
(r � �i(~u)r)hRh~ui;  

� � �r � �i(~u)r~ui;  
�

=
�
(r � �i(~u)r)hRh~ui; P 

�� �r � �i(~u)r~ui;  
�

= ���i(~u)rRh~ui;rP �+ ��i(~u)r~ui;r 
�

= ���i(~u)r~ui;rP 
�
+
�
�i(~u)r~ui;r 

�
=
�r � �i(~u)r~ui; (I � P ) 

�
:

Using the mesh assumption and the stability of P yields

IIb � kr � �i(~u)r~uikkn � C
�kr~uk2 + k�~uik

�
kn:

The last term is simple: III � Cknk~ekL1(In).
In the case of the dG methods, we also estimate

knk[U ]n�1;i k
�1
n k � k~eikL1(In) + k~e�n�1;ik � k~eikL1(In) +Ckh2n�hnU

�
n�1;ik:

Putting together the di�erent contributions in the two cases (ordinary and partial
di�erential equations) yields (3.2) and (3.3).
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We begin the estimate on Rpx by subtracting the di�erential equation (3.1) from
the de�nition and taking norms as above to get for 1 � i � d,

kh2nRpx(U )ik �
X
K2Tn

�kh2n( _Ui � _~ui)kL2(K) + kh2n(fi(U )� fi(~u))kL2(K)

+ kh2n(r � �i(U )rUi �r � �i(~u)r~ui)kL2(K)

�
The �rst two terms are treated like the corresponding terms in Rt above, whileX
K2Tn

kh2n(r � �i(U )rUi �r � �i(~u)r~ui)kL2(K)

�
X
K2Tn

kh2nr � �i(~u)(rUi �r~ui)kL2(K)

+
X
K2Tn

kh2nr � (�i(U )� �i(~u))rUikL2(K)

= I + II:

Expanding,

I =





 X
K2Tn

�
h2n
X
j1;j2

DX
l=1

��
@�i(U )

@ul
� @�i(~u)

@ul

�
@~ul
@xj1

@~ui
@xj2

+
@�i(U )

@ul

�
@Ul
@xj1

� @~ul
@xj1

�
@Ui
@xj2

+
@�i(U )

@ul

�
@Ul
@xj1

� @~ul
@xj1

�
@~ui
@xj2

�
+ �i(~u)�~ui






= kIa+ Ib + Ic + Idk

Term by term, we estimate

kIak � kru�i(~u) �ru�i(U )k khnr~uk khnr~uik � Ck~ekkhnr~uk2;
kIbk � kru�i(U )k khnr~ek khnrUik � Ckhnr~ek kUik;

kIck � kru�i(U )k khnr~ek khnr~uik � Ckhnr~ek khnr~uik;
kIdk � Ckh2n�~uik:

Next, we write

II =





 X
K2Tn

�
h2n
X
j1;j2

DX
l=1

��
@�i(U )

@ul
� @�i(~u)

@ul

�
@Ul
@xj1

@Ui
@xj2

+
@�i(~u)

@ul

�
@Ul
@xj1

� @~ul
@xj1

�
@Ui
@xj2

�




� C

�k~ek khnrUk2 + khnr~ek khnrUik
� � C

�k~ek kUk2 + khnr~ek kUik
�

Estimate (3.4) now follows.
To obtain (3.5), we compute using the de�nition of Rp2:

kh2nRp2(U )ik2 =
X
K2Tn

Z
@Kn@


hn(K)3
���i(U )n@K � [rUi]@K=2

��2 ds:
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Consider the integral along one edge of @K for some K. Using rU ri and rU li to
denote the values of rUi on the two sides of @K, we �nd thatZ

@K

��[rUi]@K��2 ds � 2

Z
@K

���rU ri �r~ui
��2 + ��r~ui �rU li

��2� ds
Noting that each internal edge occurs twice in the expansion for II, we obtain

kh2nRp2(U )ik2 � C
X
K2Tn

h3n(K)krUi �r~uik2L2(@K)

Now, we use the trace inequality to estimate

kh2nRp2(U )ik2 � C
X
K2Tn

h3n(K)kr~eikL2(K)k�~uikL2(K)

� C
�khnr~eik2 + kh2n�~uik2

�
:

Finally with ~P = P , we insert the ordinary di�erential equation to get

k(I � P )Rox(U )ik = k(I � P )
�
( _Ui � _~ui) � (fi(U ) � fi(~u))

�k
� k(I � P ) _~uik+ kfi(U )� fi(~u)k+ kP (fi(U )� fi(~u))k
� k(I � P )fi(~u)k+ 2kfi(~u)� fi(U )k

�
(
Ckhnrfi(~u)k+ Ck~ek
Ckh2nD2fi(~u)k +Ck~ek

and the result follows by di�erentiating fi and using elliptic regularity.

Proof of Theorem 3.4.
First we estimate kr~un�1k by introducing the discrete solution operator Th into

Vn corresponding to T and using the standard error estimate in the energy norm:

kr~un�1k � kr(T � Th)�hnU
�
n�1k+ krTh�hnU

�
n�1k

� Ckhn�hnU
�
n�1k+ krU�n�1k: (7.2)

Applying the energy estimates to the a priori error bound, we �nd that

k~ekL1(In) � CeCkn
�kh2n�hnU

�
n�1k+ kh2nrU�n�1k+ h2n;max + knk�hnU

�
n�1k

+ knkrU�n�1k+ kn
�
:

To estimate khnr~ek, we introduce the weighted elliptic projection and use the inverse
estimate (7.1):

khnr~ek � khnr(U�Rh~u)k+khnr(Rh~u�~u)k � Ck~ek+kRh~u�~uk+khnr(Rh~u�~u)k:
The result now follows by applying the energy estimates to the coe�cients in the a
priori bounds (3.2)�(3.6) together with these results.

To simplify the presentation of the proofs of the results in Section 3.3, we analyze
the system 8>>><

>>>:
_u1 � �1�u1 = f1(u1; u2); (x; t) 2 
�R+;

_u2 = f2(u1; u2); (x; t) 2 
�R+;

u1(x; t) = 0; (x; t) 2 ��R+;

u(x; 0) = u0(x); x 2 
:

(7.3)
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The proofs extend directly to the more general problem (3.19).

Proof of Proposition 3.5. To obtain the �rst estimate on the gradient of u, we �rst
take the inner product of the parabolic equation in (7.3) and ��u1 to obtain

�( _u1;�u1) + �1k�u1k2 = �(f1(u)�u1):
Using Green's formula on the �rst and last terms yields

1

2

d

dt
kru1k2 + �1k�u1k2 =

�
fu1;1ru1;ru1

�
+
�
fu2;1ru2;ru1

�
: (7.4)

Di�erentiating the ordinary di�erential equation with respect to xi and taking the
inner product with uxi;2 gives

1

2

d

dt
kuxi;2k2 =

�
fu1;2uxi;1; uxi;2

�
+
�
fu2;2uxi;2; uxi;1

�
: (7.5)

Now we add (7.4) with (7.5) with i = 1; 2 and use the bound on the partial derivatives
of f to obtain

1

2

d

dt
kruk2 � 2Lnkruk2:

Integrating and using Gronwall's lemma gives the desired estimate.
To obtain (3.21), we argue in the same way after taking the inner product of the

parabolic equation with ��_u1 and using Green's formula to get

kr _u1k2 + �1
1

2

d

dt
k�u1k2 =

�
fu1;1ru1;r _u1

�
+
�
fu2;1ru2;r _u1

�
:

Estimating with the Cauchy-Schwarz inequality on the right, kicking the terms in-
volving kr _u1k, and using the previous estimate gives the result for up = u1. To
obtain the estimate for uo = u2, we begin by di�erentiating the ordinary di�erential
equation with respect to xi twice for i = 1 and 2, adding the resulting equations,
taking the inner product with �u2, and estimating on the right-hand side using the
Cauchy-Schwarz inequality and the boundedness of the partial derivatives of f . In-
tegrating and using Gronwall's lemma together with the previous results yields the
desired estimate.

Proof of Proposition 3.6. We present the proof of the result for the cG(1) method.
The proofs for the other methods is similar. The cG(1) equations for (7.3) readZ

In

( _U1;W1) dt+ �1

Z
In

(rU1;rW1) dt =

Z
In

(f1(U );W1) dt;Z
In

( _U2;W2) dt =

Z
In

(f2(U );W2) dt; (7.6)

where W 2 Vn. We choose W2 = U�n;2 in the second equation, noting thatZ
In

( _U2; U
�
n;2) dt = kU�n;2k2 � (U+

n�1;2; U
�
n;2):

Using the bound on jf j and the stability of P with respect to the L2 norm, we conclude

kU�n;2k � kU�n�1;2k+ knMn:
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Similarly, we choose W1 = U�n;1 in the �rst equation to get

kU�n;1k2 + �1
kn
2
krU�n;1k2 =

�
U+
n�1;1; U

�
n;1

�� �1
kn
2

�rU+
n�1;1;rU�n�1;1

�
+

Z
In

(f1(U ); U�n;1) dt:

Estimating on the right using the Cauchy-Schwarz inequality and the stability of P
with respect to the energy norm, see Crouzeix and Thomée [16], and kicking the
appropriate terms gives the conclusion.

To prove the a priori error bound, we begin by subtracting (7.6) from (7.3) to
obtain an equation for the error ~e = ~u� U ,8>><

>>:

Z
In

(_~e1;W1) dt+ �1

Z
In

(r~e1;rW1) dt =

Z
In

(f1(~u)� f1(U );W1) dt;Z
In

(_~e2;W2) dt =

Z
In

(f2(~u)� f2(U );W2) dt; (7.7)

for all W 2 Vn. We split the error ~e = � � � with � = ~u� ~U denoting a computable
interpolation error and � = U � ~U 2 Vn. ~U is de�ned by

~U = Qn~un�1
t� tn
�kn + Qn~un

t� tn�1
kn

;

where Qn denotes the interpolation operator into Vn. This means that k~ekL1(In) �
k�kL1(In) + k�kL1(In) where

k�kL1(In) � C

(
knk _~ukL1(In)

k2nk�~ukL1(In)

+C

(
khnr~ukL1(In)

kh2D2~ukL1(In)

: (7.8)

From (7.7), we obtain an equation for the discrete error:8>>>>>>>>><
>>>>>>>>>:

Z
In

( _�1;W1) dt+ �1

Z
In

(r�1;rW1) dt =

Z
In

( _�1;W1) dt� �1

Z
In

(r�1;rW1) dt

+

Z
In

(f1(~u)� f1( ~U );W1) dt+

Z
In

(f1( ~U ) � f1(U );W1) dt;Z
In

( _�2;W2) dt =

Z
In

( _�2;W2) dt

+

Z
In

(f2(~u)� f2( ~U );W2) dt+

Z
In

(f2( ~U ) � f2(U );W2) dt:

We choose W = ��n and estimate on the right, usingZ
In

( _�i;Wi) dt = (��n;i � �+n�1;i;Wi);

to get from the �rst equation

k��n;1k2 + �1
kn
2
kr��n;1k2

� k�+n�1;1kk��n;1k+ �1
kn
2
kr�+n�1;1kk��n;1k+ Lnknk�kL1(In)k��n;1k

+ Lnknk�k2L1(In) + 2k�kL1(In)k��n;1k+ �1knkr�1kL1(In)kr��n;1k:
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Now we use the Cauchy-Schwarz inequality to conclude that there is a constant C =
C(�) such that

k��n;1k2 � C
�k�+n�1;1k2 + knkr�+n�1;1k2 + k�k2L1(In) + knkr�1k2L1(In)

�
+CLnknk�k2L1(In):

Adding the analogous estimate for k��n;2k2 and assuming that knLn is su�ciently
small, we conclude

k�kL1(In) � C
�k��n�1k+ k1=2n kr��n�1;1k+ k�kL1(In) + k1=2n kr�1kL1(In)

�
:

The result follows directly.

Proof of Lemma 3.7. We present the proof for the dual problem for (7.3), which we
rewrite after changing variable t! tn � t as8>>><

>>>:

_�1 � �1��1 = �f11 �1 + �f21�2; x 2 
; 0 < t � tn;
_�2 = �f12 �1 + �f22�2; x 2 
; 0 < t � tn;

�1(x; t) = 0; x 2 
; 0 < t � tn;

�(x; 0) = �n(x); x 2 
:

(7.9)

Taking the inner product of the di�erential equations with � then estimating by using
the uniform bound on �fji together with the Cauchy-Schwarz inequality, and then
concluding by integrating and making a Gronwall argument, yields the �rst estimate.
The second and last estimates follow directly. Next, we take the inner product of the
�rst di�erential equation in (7.9) with ���1 and use Green's formula on the left and
the Cauchy-Schwarz inequality on the right to get

1

2

d

dt
kr�1k2 + �1k��1k2 � L2

nk�1k2 +
1

4
k��1k2 + L2

nk�2k2 +
1

4
k��1k2:

Kicking the obvious terms, integrating, and using the previous results gives the third
estimate. The fourth estimate follows directly.

8. Details of the analysis in Section 5.

Proof of Proposition 5.1.
To simplify the presentation, we once again present the proofs for cG(1) method

for the system (7.3) of a coupled parabolic and ordinary di�erential equation. As
before, the proofs extend to all of the methods applied to the general problem (3.19).

To obtain (5.2), we take the inner product of the parabolic equation in (7.3) with
_u1 and get

k _u1k2 + �1
1

2

d

dt
kru1k = (f1(u); _u1):

We estimate using the Cauchy-Schwarz inequality on the right together with the
bound on f and then integrate to obtain the desired estimate. To show (5.3), we
choose W1 = _U1 2 Vn in (7.6) and estimate using the Cauchy-Schwarz inequality on
the right and the uniform bound on f to getZ

In

k _U1k2 dt+ �1
1

2

Z
In

d

dt
krU1k2 dt � 1

2
M2km =

1

2

Z
In

k _U1k2 dt:
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Kicking the last term on the right and computing the second integral on the left, we
obtain Z

In

k _U1k2 dt+ �1krU�n;1k2 � �1krU+
n�1;1k2 + knM

2:

If there is no mesh change across tn�1 or if there was re�nement and the meshes are
nested, then U+

n�1 = U�n�1. Otherwise, there is a constant C such that krPnU�n�1k �
CkrU+

n�1k. Assuming that only a �nite number of mesh coarsenings are permitted
on any �xed time interval, we can repeat this argument to conclude that

Z tn

0

k _U1k2 dt+ �1krU�n;1k2 � CkrU�0;1k2 +CM2tn:

This give the result.

Proof of Theorem 5.3. Since the proof is based on controlling the error between U
and the local solution ~u starting at time tn�1 and using the fact that ~u remains inside
an invariant rectangle, we could prove the theorem directly if the a posteriori error
bound was pointwise in space. Instead, we use the equivalence of norms on a �nite
dimensional space to derive a pointwise estimate on a quantity in the �nite element
space from an L2 estimate. To do this, we compare U to the pointwise interpolant
Q~u. Since generalized rectangles are convex, Q~u is contained inside any rectangle
that contains ~u.

For any m � n,

kU�m � Q~umkL1(
) � kh�1=2m (U�m �Q~um)k
� kh�1=2m (~um � Q~um)k+ kh�1=2m (U�m � ~um)k:

(8.1)

We bound the �rst term on the right using the standard interpolation estimate

kh�1=2m (~u�Q~u)k � Ckh3=2m �~uk;

where C is an interpolation constant. At �rst glance, this is an a priori expression.
But the regularity estimates in Proposition 3.5 imply that we can bound derivatives
of ~u in terms of derivatives of the initial data ~un�1, which are determined by U�n�1,
and thus get an a posteriori expression. Assuming that ~u is contained in Ro, we take
the uniform Lipschitz constant L in (3.21) to get

kh�1=2m (~u� Q~u)k � C
�kh3=2m �~un�1k+ kh3=2m r~un�1k

�
e2L(tm�tn�1):

Finally, we use (7.2) and the assumption hm = hn to conclude that

kh�1=2m (~u�Q~u)k � C
�kh3=2n �hnU

�
n�1k+ kh3=2n rU�n�1k

�
e2L(tm�tn�1):

(8.2)

We begin estimating the second quantity on the right in (8.1) by using the a
posteriori bound (2.21), assuming that hn = hn+1 = � � � = hm:

kh�1=2m ~e�mk � S0(tn�1; tm)kh�1=2n ~e�n�1k+ CS1t (tn�1; tm)kh�1=2kRt(U )kL1(tn�1;tm)

+ CSpx(tn�1; tm)
�kh3=2Rpx(U )kL1(tn�1;tm) + kh3=2Rp2(U )kL1(tn�1 ;tm)

�
:
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Assuming that U is contained in Ro, (5.4) implies that

kh�1=2m ~e�mk � C1e
C2(tm�tn�1)

�khn�hnU
p;�
n�1k+ krUp;�n�1k

�
��kh�1=2n ~e�n�1k+ kh�1=2kRt(U )kL1(tn�1;tm)

+ kh3=2Rpx(U )kL1(tn�1;tm) + kh3=2Rp2(U )kL1(tn�1;tm)

�
;
(8.3)

where C1 = C1(�;M;L) and C2 = C2(L) are �xed constants.
Putting (8.3) and (8.2) together with Lemma 3.1, we conclude that as long as U

and ~u are contained in Ro,

kU�m � Q~umkL1(
)

� C1e
C2(tm�tn�1)

�
1 + khn�hnU

p;�
n�1k+ krUp;�n�1k

�
��kh�1=2k�Rt(U )kL1(tn�1;tm) + kh3=2Rpx(U )kL1(tn�1;tm)

+ kh3=2Rp2(U )kL1(tn�1;tm) + kh3=2n �hnU
�
n�1k+ kh3=2n rU�n�1k

�
:

(8.4)

Note that the assumption of a uniformmesh size form > n is critical to the conversion
from a pointwise to L2 bound on the error because the a posteriori error bound on
the error at at time node tm depends on the mesh sizes and time steps on all the
previous intervals. The result still holds, with a di�erent constant C1, if we allow a
�xed �nite number of mesh re�nements in the previous steps, assuming that the ratio
of a re�ned mesh size and the previous mesh size is bounded below uniformly, and
any number of mesh coarsenings.

We treat the proof in two cases, �rst assuming that for some n � 1, U�n�1(x) 2 Ri

for all x 2 
 and showing that U�n 2 R2� for all x 2 
. Since U�m�1 is the standard
continuous piecewise linear �nite element approximation of ~um�1, for any positive
integer m, it is possible to prove the pointwise error bound

kU�m�1 � ~um�1kL1(
) � Ck log(hm)h2m�hmU
�
m�1kL1(
); (8.5)

see Eriksson [19] and Eriksson and Johnson [24]. Therefore as long as (5.7) holds,
~un�1 is contained in R� and therefore ~u remains in R� for all t � tn�1. The idea of
the proof is to control the size of the error to keep U from moving too far away from
Ri over the next step. We control the size of the error by using the a posteriori error
bound with the stability factors replaced by a bound.

By the local existence result, U�n exists uniquely and is contained in Ro for kn
su�ciently small depending on the �xed value dist (@Ro; @Ri) = r. Hence, adjusting
the value of C1 in terms of C1 in (8.3) and C in (5.7), if U�n is computed so (5.8)
holds then (8.4) guarantees that U�n remains within R2�. We know that (5.8) can
be achieved since ~u and U are contained in Ro and we can apply Corollary 3.3 and
Theorem 3.4 to bound the residual errors on Im in terms of quantities that can be
made as small as desired by re�ning the mesh and time step in a suitable way. Namely,
there are constants C1 = C1(�;M;L) and C2 = C2(L) such that

khm�1=2kmRt(U )kL1(Im) + kh3=2m Rpx(U )kL1(Im) + kh3=2m Rp2(U )kL1(tn�1;tm)

� C1e
C2km

�k(h3=2m + h�1=2m km + h�5=2m k2m)�hmU
�
m�1k

+ k(h3=2m + h�1=2m km + h�5=2m k2m)rU�m�1k+ kh3=2m + h�1=2m km + h�5=2m k2mk
�
:

(8.6)

We apply this with m = n to conclude that (5.8) is satis�ed for all su�ciently small
time steps and mesh size depending on k�hnU

�
n�1k and krU�n�1k.
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Now consider the case when U�n�1 is contained in R2� but not in Ri. As in the
�rst case, we control the distance between U and Ri by controlling the error between
U and the local solution ~u beginning at tn�1 using the a posteriori error bound until
the time that the local solution ~u enters into Ri.

However, now the argument possibly requires control of the error over several time
steps. Theorem 3.4 guarantees that the residual errors on any interval Im, m � n,
can be made smaller by re�nement provided U and the local solutions associated to
each time node tm remain in Ro. By (8.5), this holds with a suitably re�ned mesh on
any given interval Im as long as U�m�1 is a �xed distance away from the boundary of
Ro. Unfortunately, this local requirement for a suitably re�ned mesh con�icts with
the requirement of uniform mesh sizes for the time steps on which we compare U
to the local solution ~u beginning at tn�1 arising from the conversion from pointwise
to L2 bounds. The same con�ict arises when we impose a maximum value on the
residual errors on each interval since the estimate (8.6) guarantees we can satisfy a
given tolerance but only with local mesh re�nement.

The resolution of this con�ict is to derive an energy estimate bounding the dis-
crete second derivative �hmU

�
m�1 at tm�1 in terms of the discrete second derivative

�hnU
�
n�1 at the �initial� time tn�1 analogous to (3.21). This allows the mesh and

time steps to be chosen a priori to satisfy the necessary local requirements, giving
(5.9) and (5.10). We used the analogous property of ~u to prove (8.2). The result is

Proposition 8.1. Under the assumptions of Propositions 3.5 and 3.6 and assum-
ing in addition that U remains in Ro and a constant space mesh and a non-increasing
sequence of time steps is used on the intervals between tn�1 and tm, there is a constant
C = C(�; L) such that

krU�mk � CeC(tm�tn�1)
�krU�n�1k+ knk�hnU

�
n�1k

�
; (8.7)

k�hm+1
U�mk � C

�
1 + (tm � tn�1)e

C(tm�tn�1)
� �krU�n�1k+ k�hnU

�
n�1k

�
:
(8.8)

Proof of Proposition 8.1.
To simplify the presentation, we once again present the proofs for cG(1) method

for the system (7.3) of a coupled parabolic and ordinary di�erential equation. As
before, the proofs extend to all of the methods applied to the general problem (3.19).

To prove (8.7), we choose W1 = ��hmU
�
m;1 in the �rst equation in (7.6) (sub-

stituting m for n), use Green's formula on the �rst and last terms in the resulting
equation, where the boundary conditions on U1 and the compatibility conditions on
f insure the boundary integrals are zero, and estimate using the uniform Lipschitz
constant of f in Ro to get

krUm;1�k2 + �km
2
k�hmU

�
m;1k2

� krU+
m�1;1k krU�m;1k+

�km
2
k�hmU

+
m�1;1k k�hmU

�
m;1k

+ LkmkrU�m;1k2 + LkmkrU+
m�1;1k krU�m;1k+ LkmkrU+

m�1;2k krU�m;1k
+ LkmkrU�m;2k krU�m;1k:

Adding the analogous estimate that results from choosingW2 = ��hmU
�
m;2 and using

the Cauchy-Schwarz inequality several times and the uniform mesh assumption, we
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obtain

krU�mk2 +
�km
2
k�hmU

�
m;1k2 � krU�m�1k2 + 6LkmkrU�mk2

+ 6LkmkrU�m�1k2 +
�km
2
k�hmU

�
m�1;1k2:

Assuming that 6Lkm < 1 and using the assumption of non-increasing time steps,

krU�mk2 +
�km
2
k�hmU

�
m;1k2 �

1 + 6Lkm
1� 6Lkm

�krU�m�1k2 + �km�1
2

k�hm�1U
�
m�1;1k2

�
:

A discrete Gronwall argument gives (8.7).
To prove (8.7), we choose W1 = ��hm

_U�m;1 in the �rst equation in (7.6), use
Green's formula on the �rst and last terms in the resulting expression, and estimate
using the Cauchy-Schwarz inequality and the uniform Lipschitz constant of f to getZ

Im

kr _U1k2 dt+ �k�hm+1
U�mk2 � �k�hmU

�
m�1k2 + L2

Z
In

krUk2 dt:

Continuing the estimate over the preceding intervals, the result follows from (5.3) and
the fact that krUk � krU�mk+ krU+

m�1k on Im.
Remark 8.1. The result holds if we allow only a �nite number of time step increases
on any �xed interval provided that the ratio of consecutive time steps is bounded
above uniformly.

The estimates (8.5) and (5.9) imply that ~un�1 is contained in R3�. Therefore ~u
remains in R3� for t � tn�1 and furthermore (5.6) implies that for all t � t� with

t� � tn�1 = � =
li3�

2
M
;

~u is contained in Ri. Note that � is independent of the particular local solution we
use. By induction we show that (5.10) and (8.4) imply that the pointwise distance
between Um and Q~u(tm) remains less than � for n � 1 � m � m� and therefore U�m
is contained in R4� for n � 1 � m < m� and U�m� is contained in R�.

If necessary, we decrease the value of kn determined by (5.10) depending on �,
L, and M to guarantee that U�m exists uniquely and is contained in Ro whenever
U�m�1 is contained in R4� for any m � n and use this time step until tm� . This
choice can be made uniformly by the same reasoning that gives the global existence of
the approximant from the local existence result under the assumption of an invariant
rectangle.

On the �rst step, since U�n and ~u are both contained in Ro, (8.4), (8.6), and
Proposition 8.1 together imply that there are constants C1 and C2 as above such that

kU�m�Q~umkL1(
)

� C1e
C2(tm�tn�1)

�
1 + khn�hnU

p;�
n�1k+ krUp;�n�1k

�
� �k(h3=2n + h�1=2n kn + h�5=2n k2n)�hnU

�
n�1k

+ k(h3=2n + h�1=2n kn + h�5=2n k2n)rU�n�1k+ kh3=2n + h�1=2n kn + h�5=2n k2nk
�(8.9)

with m = n. Therefore (5.10) implies that U�n remains within R4�.
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We de�ne tm� to be the �rst node with tm� � t�, where m� � �=kn + 1. Note
that tm� � t� +K. For n � m � m� and as long as U�m�1 is contained in R4� but
not in R2�, we compute U�m uniquely contained in Ro. Because of (5.9), (8.8), and
(8.5), we know that the data for the local solution beginning at tm�1 is contained in
R4�, so the a posteriori theory applies on this interval. Hence (5.10) and (8.9) imply
that U�m is contained in R4�. By the de�nition of tm� , the result follows.

Proof of Theorem 5.4. We analyze the cGL method in detail. The proof for the dGL
method is similar. Arguing as in Thomée [63] on a triangle K, there is a constant C
such that ����QK(g) �

Z
K

g dx

���� � Ch(K)2
X
j�j=2

kD�gkL1(K):

Applying this to g = ( _Ui � fi(U ))�P�i, noting that D2( _Ui � fi(U )) = D2�P�i � 0,
and using the stability of P with respect to the energy norm, we get����QK(( _Ui � fi(U ))�P�i) �

Z
K

( _Ui � fi(U ))�P�i dx

����
� Ckh2D2fi(U )kL2(K)k�ikjL2(K) + Ckh2r( _Ui � fi(U ))kjL2(K)kr�ikjL2(K):

The result follows by using this estimate on each element in Tn after writingZ tn

0

�
_Ui � fi(U ); �P�i)h � ( _Ui � fi(U ); �P�i)

�
dt

=

Z tn

0

X
K2Tn

�
QK
�
( _Ui � fi(U ))�P�i

�� Z
K

( _Ui � fi(U ))�P�i dx

�
dt:

Proof of Theorem 5.7. We only analyze the cGL(1) method, since the analysis of

the dGL methods is similar. We let ~Un;i denote the vector of nodal values of U�n;i
associated to nodal basis f n;ig for Vn on In, �Bn :

�
�Bn
�
ij
=
�
 n;i;  n;j

�
hn

denote the

lumped mass matrix, and An denote the sti�ness matrix. �Bn is a diagonal matrix and
there is a constant �1 such that

�
�Bn
�
ii
� �1h

2
n;min while An has positive elements on

the diagonal and non-positive o�-diagonal entries and there is a constant �2 indepen-
dent of the mesh such that maxi j(An)iij � �2. See Thomée [63]. We abuse notation

to denote f(~U ) =
�����!
Qnf(U ).

The equation for the cG(1) method in matrix form reads

�Bn
�
~Un;i ���!QnUn�1;i

�
+
kn
2
An
�
~Un;i +

��!
QnUn�1;i

�
=

Z
In

�Bnfi(~U ) ds:
(8.10)

We show that for 1 � i � D, U�n;i � ai � 0 provided U�n�1 2 R for all x 2 
. (8.10)
can be rewritten as�

�Bn +
kn
2
An
��
~Un;i � ~ai

�
=
�
�Bn � kn

2
An
���!
QnUn�1;i � ~ai

�
+

Z
In

�Bnfi(~U ) ds;
(8.11)

where ~ai is the obvious vector with coe�cients ai. The �rst step is to show that the
right-hand side of (8.11) is a vector with positive entries. For 1 � j � D, we set

~aj =

(
~Un;j; j 6= i;

~ai; j = i:
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Note that ~a 2 @R. Taylor's formula implies that

fi(~U ) = fi(~a) +
@fi
@ui

(�)(~Ui � ~ai);

for some � 2 R. With f�n; �n�1g denoting the Lagrange basis functions for P1(In)

associated to the endpoints of In, ~U (t) = ~Un�n(t) +
��!
QnUn�1�n�1(t) for t 2 In. We

substitute this into (8.11) to obtain��
I �

Z
In

@fi
@ui

(�)�n dt

�
�Bn +

kn
2
An

��
~Un;i � ~ai

�
=

��
I �

Z
In

@fi
@ui

(�)�n�1 dt

�
�Bn � kn

2
An

����!
QnUn�1 � ~ai

�
+ kn �Bnfi(~a): (8.12)

Now we note that the coe�cients of fi(~a) are non-negative since ~a 2 @R. Furthermore,
the matrix ��

I �
Z
In

@fi
@ui

(�)�n�1 dt

�
�Bn � kn

2
An

�

has positive elements since every diagonal element is larger than h2n(1��1=2��2=2) �
0 and the o� diagonal elements are positive. Since

��!
QnUn�1 � ~ai is a vector with

positive entries, the right-hand side of (8.12) is a positive vector. On the left-hand
side of (8.12), the matrix��

I �
Z
In

@fi
@ui

(�)�n dt

�
�Bn +

kn
2
An

�

has positive elements on the diagonal and negative non-diagonal elements, and the
following proposition, proved in Thomée [63], applies:

Proposition 8.2. Let I be the identity matrix and G be a matrix with Gii � 0
and Gij � 0 for i 6= j. Then the matrix (I + G)�1 maps vectors with positive
coe�cients into vectors with positive coe�cients.
This gives the desired conclusion. Similarly, we can show that bi � U�n;i � 0 for each
i.
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